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CHAPTER

ONE

OVERVIEW

FINUFFT is a library to compute efficiently the three most common types of nonuniform fast Fourier transform
(NUFFT) to a specified precision, in one, two, or three dimensions, either on a multi-core shared-memory machine,
or on a GPU. It is extremely fast (typically achieving 106 to 108 points per second on a CPU, or up to 109 points per
second on a GPU), has very simple interfaces to most major numerical languages (C/C++, Fortran, MATLAB, octave,
Python, and Julia), but also has more advanced (vectorized and “guru”) interfaces that allow multiple strength vectors
and the reuse of FFT plans. The CPU library is written in C++ (with limited use of ++ features), OpenMP, and calls
FFTW. It has been developed since 2017 at the Center for Computational Mathematics at the Flatiron Institute, by Alex
Barnett and others, and is released under an Apache v2 license. Here is a project overview.

1
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1.1 What does FINUFFT do?

As an example, given 𝑀 real numbers 𝑥𝑗 ∈ [0, 2𝜋), and complex numbers 𝑐𝑗 , with 𝑗 = 1, . . . ,𝑀 , and a requested
integer number of modes 𝑁 , FINUFFT can efficiently compute the 1D “type 1” transform, which means to evaluate
the 𝑁 complex outputs

𝑓𝑘 =

𝑀∑︁
𝑗=1

𝑐𝑗𝑒
𝑖𝑘𝑥𝑗 , for 𝑘 ∈ Z, −𝑁/2 ≤ 𝑘 ≤ 𝑁/2− 1 . (1.1)

As with other “fast” algorithms, FINUFFT does not evaluate this sum directly—which would take 𝑂(𝑁𝑀) effort—but
rather uses a sequence of steps (in this case, optimally chosen spreading, FFT, and deconvolution) to approximate the
vector of answers (1.1) to within the user’s desired relative tolerance, with only 𝑂(𝑁 log𝑁 +𝑀) effort, ie, in almost
linear time. Thus the speed-up is similar to that of the FFT. You may now want to jump to quickstart, or see the
definitions of the other transforms in general dimension.

One interpretation of (1.1) is: the returned values 𝑓𝑘 are the Fourier series coefficients of the 2𝜋-periodic distribution
𝑓(𝑥) :=

∑︀𝑀
𝑗=1 𝑐𝑗𝛿(𝑥−𝑥𝑗), a sum of point-masses with arbitrary locations 𝑥𝑗 and strengths 𝑐𝑗 . Such exponential sums

are needed in many applications in science and engineering, including signal processing (scattered data interpolation,
applying convolutional transforms, fast summation), imaging (cryo-EM, CT, MRI, synthetic aperture radar, coherent
diffraction, Fresnel aperture modeling, VLBI astronomy), numerical analysis (computing Fourier transforms of func-
tions, moving between non-conforming quadrature grids, solving partial differential equations, Ewald methods), and
finance (correlation estimators). See our tutorials and demos pages and the related works for examples of how to use
the NUFFT in applications. In fact, there are several application areas where it has been overlooked that the needed
computation is simply a NUFFT (eg, particle-mesh Ewald in molecular dynamics).

1.2 Why FINUFFT? Features and comparison against other CPU
NUFFT libraries

The basic scheme used by FINUFFT is not new, but there are many mathematical and software engineering improve-
ments over other CPU libraries (see below for GPU features). As is common in NUFFT algorithms, under the hood
is an FFT on a regular “fine” (upsampled) grid—the user has no need to access this directly. Nonuniform points are
either spread to, or interpolated from, this fine grid, using a specially designed kernel (see right figure above). Our
main features are:

• High speed. For instance, at similar accuracy, FINUFFT is up to 10x faster than the multi-threaded Chemnitz
NFFT3 library, and (in single-thread mode) up to 50x faster than the CMCL NUFFT library. This is achieved
via:

1. a simple new “exponential of semicircle” kernel that is provably close to optimal

2. quadrature approximation for this kernel’s Fourier transform

3. load-balanced multithreaded spreading/interpolation

4. bin-sorting of points to improve cache reuse

5. a low upsampling option for smaller FFTs, especially in type 3 transforms

6. piecewise polynomial kernel evaluation (additions and multiplications only) that SIMD-vectorizes reliably
on open-source compilers

• Less RAM. Our kernel is so fast that there is no point in precomputation; it is always evaluated on the fly. Thus
our memory footprint is often an order of magnitude less than the fastest (precomputed) modes of competitors
such as NFFT3 and MIRT, especially at high accuracy.

1.1. What does FINUFFT do? 2

https://www-user.tu-chemnitz.de/~potts/nfft/
https://www-user.tu-chemnitz.de/~potts/nfft/
http://www.cims.nyu.edu/cmcl/nufft/nufft.html
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• Automated kernel parameters. Unlike many competitors, we do not force the user to worry about kernel choice
or parameters. The user simply requests a desired relative accuracy, then FINUFFT chooses parameters to target
this accuracy as fast as possible.

• Simplicity. We provide interfaces that perform a NUFFT with a single command—just like an FFT—from seven
common languages/environments. For advanced users we also have “many vector” interfaces that can be much
faster than repeated calls to the simple interface with the same points. Finally (like NFFT3) we have a “guru”
interface for maximum flexibility, in all of these languages.

For technical details on much of the above see our papers. Note that there are other tasks (eg, transforms on spheres,
inverse NUFFTs) provided by other libraries, such as NFFT3, that FINUFFT does not provide.

1.3 GPU version: cuFINUFFT

In 2021 we released cuFINUFFT, a CUDA implementation of type 1 and 2 transforms in dimensions 2 and 3, developed
mostly by Yu-Hsuan (Melody) Shih as a CCM summer intern and NYU graduate student (in 2022 she moved to NVidia).
It is often 10x faster than the CPU code, and up to 100x faster than other established GPU NUFFT codes, as the above
graph indicates (see [S21] in our references). This is achieved in part by developing a type 1 algorithm that exploits
fast GPU shared memory, which requires hand-tuned choices of bin-sizes due to the small memory size (49kB per
thread block). Both double and single precision are supported, and a Python interface. Please see sections of this
documentation labeled “GPU”. In 2023 we added dimension 1, and merged cuFINUFFT into the FINUFFT repository.
Further unification of the interfaces, underlying algorithm, and completion of type 3 on the GPU are still in progress.

1.3. GPU version: cuFINUFFT 3
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1.4 Do I even need a NUFFT?

A user’s need for a nonuniform fast Fourier transform is often obscured by the lack of mathematical description in
science application areas. Therefore, read our tutorials and demos to try and match to your task. Write the task in
terms of one of the three transform types. If both 𝑀 and 𝑁 are larger than of order 102, FINUFFT should be the ticket.
However, if 𝑀 and/or 𝑁 is small (of order 10 or less), there is no need for a “fast” algorithm: simply evaluate the sums
directly.

If you need to fit off-grid data to a Fourier representation (eg, if you have off-grid k-space samples of an unknown
image) but you do not have quadrature weights for the off-grid points, you may need to invert the NUFFT, which
actually means solving a large linear system; see our tutorials and demos, and references [GLI] [KKP]. Poor coverage
by the nonuniform point set will cause ill-conditioning and a heavy reliance on regularization.

Another scenario is that you wish to evaluate a forward transform such as (1.1) repeatedly with the same set of nonuni-
form points 𝑥𝑗 , but fresh strength vectors {𝑐𝑗}𝑀𝑗=1, as in the “many vectors” interface mentioned above. For small such
problems it may be even faster to fill an 𝑁 -by-𝑀 matrix 𝐴 with entries 𝑎𝑘𝑗 = 𝑒𝑖𝑘𝑥𝑗 , then use BLAS3 (eg ZGEMM) to
compute 𝐹 = 𝐴𝐶, where each column of 𝐹 and 𝐶 is a new instance of (1.1). If you have very many columns this can
be competitive with a NUFFT even for 𝑀 and 𝑁 up to 104, because BLAS3 is so fast.

1.4. Do I even need a NUFFT? 4



CHAPTER

TWO

INSTALLATION

There are two main ways to compile this library from source: via CMake (the recommended modern way, being more
platform-independent), or via a GNU makefile (which has various settings for linux, OSX, Windows). We currently
support both, and detail them in that order in the text below. If you cannot get FINUFFT to compile, as a last resort you
might find a precompiled binary for your platform under Assets for various releases. Please post an Issue to document
your installation problem.

Note: Python-only users can simply install via pip install finufftwhich downloads a generic binary from PyPI.
Only if you prefer a custom compilation, see below.

2.1 CMake CPM Based Installation

This is the easiest way to install finufft if you are using CMake in your own project. First include CPM to your
project.

The easiest way is to follow the instructions to automatically add CPM to cmake.

Then add the following to your CMakeLists.txt:

CPMAddPackage(
NAME Finufft
GIT_REPOSITORY https://github.com/flatironinstitute/finufft.git
GIT_TAG master
GIT_SHALLOW Yes
GIT_PROGRESS Yes
EXCLUDE_FROM_ALL Yes
SYSTEM

)

target_link_library(your_executable [PUBLIC|PRIVATE|INTERFACE] finufft_static)
# or for shared linking
target_link_library(your_executable [PUBLIC|PRIVATE|INTERFACE] finufft)

Then cmake will automatically download the library and link it to your executable.

5
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2.2 CMake Based Installation

These instructions are in draft form. Make sure you have cmake version at least 3.19. The basic quick download,
building, and test is then:

git clone https://github.com/flatironinstitute/finufft.git
cd finufft
mkdir build
cd build
cmake .. -D FINUFFT_BUILD_TESTS=ON --install-prefix /path/to/install
cmake --build . -j
ctest
cmake --install .

Note: if you don’t supply –install-prefix, it will default to /usr/local on most systems. If you don’t have root access,
you must supply a prefix you can write to such as $HOME/local. Now. . .

In build, this creates libfinufft_static.a and libfinufft.so, and runs a test that should take a few seconds
and report 100% tests passed, 0 tests failed out of 17. To use the library, link against either the static or
dynamic library in build or your installed version (i.e. /path/to/install/lib64/libfinufft.so or /path/to/
install/lib/libfinufft.so). If you install anywhere other than standard system wide locations (/usr/local),
building/linking requires you specify the location of the library. If you link the shared library, you should also tell your
compiled binary to store the location of that library in its RPATH. Let’s say you installed with the prefix $HOME/local,
your system prefers the lib64 library directory, and you’re still in the build directory. Then. . .

g++ -o simple1d1 ../examples/simple1d1.cpp -I$HOME/local/include -L$HOME/local/lib64 -Wl,
→˓-rpath $HOME/local/lib64 -lfinufft -O2

will manually build the simple1d1 example and drop it in the current directory.

Here are all our build options, showing name, explanatory text, and default value, straight from the CMakeLists.txt
file:

option(FINUFFT_BUILD_EXAMPLES "Whether to build the FINUFFT examples" OFF)
option(FINUFFT_BUILD_TESTS "Whether to build the FINUFFT tests" OFF)
option(FINUFFT_BUILD_FORTRAN "Whether to build the FINUFFT Fortran examples" OFF)
option(FINUFFT_BUILD_MATLAB "Whether to build the FINUFFT Matlab interface" OFF)
option(FINUFFT_ENABLE_SANITIZERS "Whether to enable sanitizers, only effective for Debug␣
→˓configuration." ON)
option(FINUFFT_USE_OPENMP "Whether to use OpenMP for parallelization. If disabled, the␣
→˓finufft library will be single threaded. This does not affect the choice of FFTW␣
→˓library." ON)
option(FINUFFT_USE_CUDA "Whether to build CUDA accelerated FINUFFT library␣
→˓(libcufinufft). This is completely independent of the main FINUFFT library" OFF)
option(FINUFFT_USE_CPU "Whether to build the ordinary FINUFFT library (libfinufft)." ON)
option(FINUFFT_STATIC_LINKING "Whether to link the static FINUFFT library (libfinufft_
→˓static)." ON)
option(FINUFFT_BUILD_DEVEL "Whether to build developement executables" OFF)

For convenience we also provide a number of cmake presets for various options and compilers, in CMakePresets.json
(this will grow to replace the old make.inc.* site files). For example, to configure, build and test the development
preset (which builds tests and examples), from build do:

2.2. CMake Based Installation 6
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cmake --preset dev ..
cmake --build . -j
ctest

Warning: Intel compilers (unlike GPU compilers) currently engage fastmath behavior with -O2 or -O3. This
may interfere with our use of std::isnan in our test codes. For this reason in the Intel presets icx and icc have
set -fp-model=strict. You may get more speed if you remove this flag.

From other CMake projects, to use finufft as a library, simply add this repository as a subdirectory using
add_subdirectory, and use target_link_library(your_executable finufft).

Note: CMake compiling on linux at Flatiron Institute (Rusty cluster). We have had a report that if you want to use
LLVM, you need to module load llvm/16.0.3 otherwise the default llvm/14.0.6 does not find OpenMP_CXX.

2.3 Classic GNU make based route

Below we deal with the three standard OSes in order: 1) linux, 2) Mac OSX, 3) Windows. We have some users
contributing settings for other OSes, for instance PowerPC. The general procedure to download, then compile for such
a special setup is, illustrating with the PowerPC case:

git clone https://github.com/flatironinstitute/finufft.git
cd finufft
cp make.inc.powerpc make.inc
make test -j

Have a look for make.inc.* to see what is available, and/or edit your make.inc based on looking in the makefile
and quirks of your local setup. As of 2021, we have continuous integration which tests the default (linux) settings in
this makefile, plus those in three OS-specific setup files:

make.inc.macosx_clang
make.inc.macosx_gcc-10
make.inc.windows_msys

If there is an error in testing on what you consider a standard set-up, please file a detailed bug report as a New Issue at
https://github.com/flatironinstitute/finufft/issues

2.4 Quick linux install instructions

Make sure you have packages fftw3 and fftw3-dev (or their equivalent on your distro) installed. Then cd into your
FINUFFT directory and do make test -j. This should compile the static library in lib-static/, some C++ test
drivers in test/, then run them, printing some terminal output ending in:

0 segfaults out of 8 tests done
0 fails out of 8 tests done

This output repeats for double then single precision (hence, scroll up to check the double also gave no fails). If this
fails, see the more detailed instructions below. If it succeeds, please look in examples/, test/, and the rest of this

2.3. Classic GNU make based route 7
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manual, for examples of how to call and link to the library. Type make to see a list of other aspects the user can build
(examples, language interfaces, etc).

2.5 Dependencies

This library is fully supported for unix/linux, and partially for Mac OSX for Windows (eg under MSYS or WSL using
MinGW compilers).

For the basic libraries you need

• C++ compiler supporting C++14, such g++ in GCC (version >=5.0), or clang (version >=3.4)

• FFTW3 (version at least 3.3.6) including its development libraries

• GNU make and other standard unix/POSIX tools such as bash

Optional:

• for Fortran wrappers: compiler such as gfortran in GCC

• for MATLAB wrappers: MATLAB (versions at least R2016b up to current work)

• for Octave wrappers: recent Octave version at least 4.4, and its development libraries

• for the python wrappers you will need python version at least 3.6 (python 2 is unsupported), with numpy.

2.6 1) Linux: tips for installing dependencies and compiling

On a Fedora/CentOS linux system, the base dependencies can be installed by:

sudo yum install make gcc gcc-c++ fftw-devel libgomp

To add Fortran and Octave language interfaces also do:

sudo yum install gcc-gfortran octave octave-devel

Note: We are not exactly sure how to install python3 and pip3 using yum. You may prefer to use conda or
virtualenv to set up a python environment anyway (see bottom).

Alternatively, on Ubuntu linux, base dependencies are:

sudo apt-get install make build-essential libfftw3-dev

and for Fortran, Python, and Octave language interfaces also do:

sudo apt-get gfortran python3 python3-pip octave liboctave-dev

In older distros you may have to compile octave from source to get the needed >=4.4 version.

You should then compile and test the library via various make tasks, eg:

make test -j

2.5. Dependencies 8
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then checking you got 0 fails. This compiles the main libraries then runs double- and single-precision tests, each of
which should report zero segfaults and zero fails.

Note: GCC versions on linux: long-term linux distros ship old GCC versions that may not be C++14 compatible. We
recommend that you compile with a recent GCC, at least GCC 7.3 (which we used for benchmarks in 2018 in our SISC
paper), or GCC 9+. We do not recommend GCC versions prior to 7. We also do not recommend GCC8 since its auto
vectorization has worsened, and its kernel evaluation rate using the default looped piecewise-polynomial Horner code
drops to less than 150 Meval/s/core on an i7. This contrasts 400-700 Meval/s/core achievable with GCC7 or GCC9
on i7. If you wish to test these raw kernel evaluation rates, do into devel/, compile test_ker_ppval.cpp and run
fig_speed_ker_ppval.m in MATLAB. We are unsure if GCC8 is so poor in Mac OSX (see below).

The make tasks (eg make lib) compiles double and single precision functions, which live simultaneously in
libfinufft, with distinct function names.

The only selectable option at compile time is multithreaded (default, using OpenMP) vs single-threaded (to achieve
this append OMP=OFF to the make tasks). Since you may always set opts.nthreads=1 when calling the multithreaded
library, the point of having a single-threaded library is mostly for small repeated problems to avoid any OpenMP
overhead, or for debugging purposes. You must do at least make objclean before changing this threading option.

Testing. The initial test is test/basicpassfail which is the most basic double-precision smoke test, producing the
exit code 0 if success, nonzero if fail. You can check the exit code thus:

test/basicpassfail; echo $?

The single-precision version is test/basicpassfailf. The make task also runs (cd test; OMP_NUM_THREADS=4
./check_finufft.sh) which is the main validation of the library in double precision, and (cd test;
OMP_NUM_THREADS=4 ./check_finufft.sh SINGLE) which does it in single precision. Since these call many tiny
problem sizes, they will (due to openmp and fftw thread-wise overheads) run much faster with less than the full thread
count, explaining our use of 4 threads. Text (and stderr) outputs are written into test/results/*.out.

Use make perftest for larger spread/interpolation and NUFFT tests taking 10-20 seconds. This writes log files into
test/results/ where you will be able to compare to results from standard CPUs.

Run make without arguments for full list of possible make tasks.

make examples to compile and run the examples for calling from C++ and from C.

make fortran to compile and run the fortran wrappers and examples.

High-level interfaces. See below for python compilation.

make matlab to compile the MEX interface to matlab, then within MATLAB add the matlab directory to your path,
cd to matlab/test and run check_finufft which should run for 5 secs and print a bunch of errors around 1e-6.

Note: If this MATLAB test crashes, it is most likely to do with incompatible versions of OpemMP. Thus, you will
want to make (or add to) a file make.inc the line:

OMPLIBS=/usr/local/MATLAB/R2020a/sys/os/glnxa64/libiomp5.so

or appropriate to your MATLAB version. You’ll want to check this shared object exists. Then make clean and make
test -j, finally make matlab again.

make octave to compile and test the MEX-like interface to Octave.

2.6. 1) Linux: tips for installing dependencies and compiling 9
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2.6.1 Compilation flags and make.inc settings

This is for experts. Here are all the flags that the FINUFFT source responds to. Activate them by adding a line of the
form CXXFLAGS+=-DMYFLAG in your make.inc:

• -DSINGLE: This is internally used by our build process to switch (via preprocessor macros) the source from
double to single precision. You should not need to use this flag yourself.

Here are some other settings that you may need to adjust in make.inc:

• Switching to linking tests, examples, etc, with PTHREADS instead of the default OMP version of FFTW, is
achieved by inserting into make.inc the line FFTWOMPSUFFIX = threads.

2.7 2) Mac OSX: tips for installing dependencies and compiling

Note: A brew package will come shortly; stay tuned. However, the below has been tested on 10.14 (Mojave) with both
clang and gcc-8, and 10.15 (Catalina) with clang.

First you’ll want to set up Homebrew, as follows. We assume a fresh OSX machine. If you don’t have Xcode, install
Command Line Tools (which is a few hundred MB download, much smaller than the now 10 GB size of Xcode), by
opening a terminal (from /Applications/Utilities/) and typing:

xcode-select --install

You will be asked for an administrator password. Then, also as an administrator, install Homebrew by pasting the
installation command from https://brew.sh

Then do:

brew install libomp fftw

This happens to also install the latest GCC (which was 8.2.0 in Mojave, and 10.2.0 in Catalina, in our tests).

If you are python-only, use:

brew install python3
pip3 install finufft

Or, for experts to compile python interfaces locally using either clang or gcc, see below.

Now to compiling the library for C++/C/fortran/MATLAB/octave use. There are now two options for compilers: 1)
the native clang which works with octave but will not so far allow you to link against fortran applications, or 2) GCC,
which will allow fortran linking with gfortran, but currently fails with octave.

2.7.1 The clang route (default)

Once you have downloaded FINUFFT from github, go to its top directory. You now need to decide if you will be
wanting to call FINUFFT from MATLAB (and currently have MATLAB installed). If so, do:

cp make.inc.macosx_clang_matlab make.inc

Else if you don’t have MATLAB, do:

2.7. 2) Mac OSX: tips for installing dependencies and compiling 10
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cp make.inc.macosx_clang make.inc

Note: The difference here is the version of OpenMP linked: MATLAB crashes when gomp is linked, so for MATLAB
users the OpenMP version used by MATLAB must be linked against (iomp5), not gomp.

Whichever you picked, now try make test -j, and clang should compile and you should get 0 fails.

clang MATLAB setup. Assuming you chose the MATLAB clang variant above, you should now make matlab. You
may need to do make matlab -j; see https://github.com/flatironinstitute/finufft/issues/157 which needs attention. To
test, open MATLAB, addpath matlab, cd matlab/test, and check_finufft, which should complete in around
5 seconds.

Note: Unfortunately OSX+MATLAB+mex is notoriously poorly supported, and you may need to search the
web for help on that, then check you are able to compile a simple mex file first. For instance, on Catalina
(10.15.6), make matlab fails with a warning involving Xcode license has not been accepted, and then an
error with no supported compiler was found. Eventually this property file hack worked, which simply requires
typing /usr/libexec/PlistBuddy -c 'Add :IDEXcodeVersionForAgreedToGMLicense string 10.0' ~/
Library/Preferences/com.apple.dt.Xcode.plist Please also read our https://github.com/flatironinstitute/
finufft/issues and if you are able to mex compile, but make matlab fails, post a new Issue.

Octave interfaces work out of the box (this also runs a self-test):

brew install octave
make octave

2.7.2 The GCC route

This is less recommended, unless you need to link from gfortran, when it appears to be essential. The basic idea is:

cp make.inc.macosx_gcc-12 make.inc
make test -j
make fortran

which also compiles and tests the fortran interfaces. You may need to edit to g++-11, or whatever your GCC version
is, in your make.inc.

Note: A problem between GCC and the new XCode 15 requires a workaround to add LDFLAGS+=-ld64 to force the
old linker to be used. See the above file make.inc.macosx_gcc-12.

We find python may be built as below. We found that octave interfaces do not work with GCC; please help. For
MATLAB, the MEX settings may need to be overridden: edit the file mex_C++_maci64.xml in the MATLAB distro,
to read, for instance:

CC="gcc-8"
CXX="g++-8"
CFLAGS="-ansi -D_GNU_SOURCE -fexceptions -fPIC -fno-omit-frame-pointer -pthread"
CXXFLAGS="-ansi -D_GNU_SOURCE -fPIC -fno-omit-frame-pointer -pthread"

2.7. 2) Mac OSX: tips for installing dependencies and compiling 11
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These settings are copied from the glnxa64 case. Here you will want to replace the compilers by whatever version
of GCC you have installed, eg via brew. For pre-2016 MATLAB Mac OSX versions you’ll instead want to edit the
maci64 section of mexopts.sh.

Note: GCC with OSX is only partially supported. Please help us if you can!

2.8 3) Windows: tips for compiling

We have users who have adjusted the makefile to work - at least to some extent - on Windows 10. If you are only
interested in calling from Octave (which already comes with MinGW-w64 and FFTW), then we have been told this can
be done very simply: from within Octave, go to the finufft directory and do system('make octave'). You may
have to tweak OCTAVE in your make.inc in a similar fashion to below.

More generally, please make sure to have a recent version of Mingw at hand, preferably with a 64bit version of gnu-make
like the WinLibs standalone build of GCC and MinGW-w64 for Windows. Note that most MinGW-w64 distributions,
such as TDM-GCC, do not feature the 64bit gnu-make. Fortunately, this limitation is only relevant to run the tests. To
prepare the build of the static and dynamic libraries run:

copy make.inc.windows_mingw make.inc

Subsequently, open this make.inc file with the text editor of your choice and assign the parent directories of the FFTW
header file to FFTW_H_DIR, of the FFTW libraries to FFTW_LIB_DIR, and of the GCC OpenMP library lgomp.dll to
LGOMP_DIR. Note that you need the last-mentioned only if you plan to build the MEX-interface for MATLAB. Now,
you should be able to run:

make lib

If the command make cannot be found and the MinGW binaries are part of your system PATH: Keep in mind that
the MinGW installation contains only a file called mingw32-make.exe, not make.exe. Create a copy of this file, call
it make.exe, and make sure the corresponding parent folder is part of your system PATH. If the library is compiled
successfully, you can try to run the tests. Note that your system has to fulfill the following prerequisites to this end:
A Linux distribution set up via WSL (has been tested with Ubuntu 20.04 LTS from the Windows Store) and the 64bit
gnu-make mentioned before. Further, make sure that the directory containing the FFTW-DLLs is part of your system
PATH. Otherwise the executables built will not run. As soon as you have everything set up, run the following command:

make test

In a similar fashion, the examples can now be build with make examples. This rule of the makefile does neither require
WSL nor the 64bit gnu-make and should hopefully work out-of-the-box. Finally, it is also possible to build the MEX
file needed to call FINUFFT from MATLAB. Since the MinGW support of MATLAB is somewhat limited, you will
probably have to define the environment variable MW_MINGW64_LOC and assign the path of your MinGW installation.
Hint to avoid misunderstandings: The last-mentioned directory contains folders named bin, include, and lib among
others. Then, the following command should generate the required MEX-file:

make matlab

For users who work with Windows using MSYS and MinGW compilers. Please try:

cp make.inc.windows_msys make.inc
make test -j

We seek help with Windows support. Also see https://github.com/flatironinstitute/finufft/issues

2.8. 3) Windows: tips for compiling 12
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2.9 Building a python interface to a locally compiled library

Recall that the basic user may simply pip install finufft, then check it worked via either (if you have pytest
installed):

pytest python/finufft/test

or the older-style eyeball check with:

python3 python/finufft/test/run_accuracy_tests.py

which should report errors around 1e-6 and throughputs around 1-10 million points/sec.

However, a user or developer may want to build a python wrapper to their locally compiled FINUFFT library, perhaps
for more speed. We now describe this, for all OSes. We assume python3 (hence pip3; make sure you have that
installed).

First, compile the shared C++ library, via, eg make lib -j (using the old-style makefile), or via:

make -p build
cd build
cmake ..
cmake --build . -j
cd ..

You may then run:

pip3 install -e python/finufft

which builds the finufft Python module, linking to the .so, and installs (in editable mode) via pip. You will see
that the finufftc.*.so shared object appears in the python/finufft/finufft/ directory. You should then run
the above tests. You could also run tests and examples via make python.

An additional performance test you could then do is:

python3 python/finufft/test/run_speed_tests.py

Note: On OSX, if trouble with python with clang: we have found that the above may fail with an error about -lstdc++,
in which case you should try setting an environment variable like:

export MACOSX_DEPLOYMENT_TARGET=10.14

where you should replace 10.14 by your OSX number.

Note: As of v2.0.1, our python interface is quite different from Dan Foreman-Mackey’s original repo that wrapped
finufft: python-finufft, or Jeremy Magland’s wrapper. The interface is simpler, and the existing shared binary is linked
to (no recompilation). Under the hood we achieve this via ctypes instead of pybind11.

2.9. Building a python interface to a locally compiled library 13
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2.9.1 A few words about python environments

There can be confusion and conflicts between various versions of python and installed packages. It is therefore a very
good idea to use virtual environments. Here’s a simple way to do it from a shell in the FINUFFT top directory (after
installing python-virtualenv):

virtualenv -p /usr/bin/python3 env1
source env1/bin/activate

Now you are in a virtual environment that starts from scratch. All pip installed packages will go inside the env1
directory. (You can get out of the environment by typing deactivate). Also see documentation for conda. In both
cases python will call the version of python you set up. To get the packages FINUFFT needs:

pip install -r python/requirements.txt

Then pip install finufft or build as above.

2.9. Building a python interface to a locally compiled library 14



CHAPTER

THREE

DIRECTORIES IN THIS PACKAGE

When you git clone https://github.com/flatironinstitute/finufft, or unpack a tar ball, you will get
the following. (Please see installation instructions)

Main library source:

• makefile : the single GNU makefile (there are no makefiles in subdirectories)

• make.inc.* : system-specific example overrides to use as your make.inc

• src : main library C++ sources

• include : header files, including those for users to compile against

• contrib : 3rd-party codes in the main library

• lib : dynamic (.so) library will be built here

• lib-static : static (.a) library will be built here

Examples, tutorials, and docs:

• examples : simple example codes for calling the library from C++ and C

• tutorial : application demo codes (various languages), supporting docs/tutorial/

• finufft-manual.pdf : the manual (auto-generated by sphinx, eg via make docs)

• docs : source files for documentation (.rst files are human-readable, kinda)

• README.md : github-facing (and human text-only reader) welcome

• LICENSE : how you may use this software

• CHANGELOG : list of changes, release notes

• TODO : list of things needed to fix or extend (also see git Issues)

Testing:

• test : main validation tests (C++/bash), including:

– test/basicpassfail{f} simple smoke test with exit code

– test/check_finufft.sh is the main pass-fail validation bash script

– test/results has validation comparison outputs (\*.refout; do not remove these), and local test out-
puts (\*.out; you may remove these)

• perftest : main performance and developer tests (C++/bash), including:

– test/spreadtestnd.sh spread/interp performance test bash script

15
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– test/nuffttestnd.sh NUFFT performance test bash script

Other language interfaces, further testing:

• fortran : wrappers and example drivers for Fortran (see fortran/README)

• matlab : MATLAB/octave wrappers, tests, and examples

• python : python wrappers, examples, and tests

– python/ci continuous integration tests

• julia : (not yet functional; for now see FINUFFT.jl)

16

https://github.com/ludvigak/FINUFFT.jl


CHAPTER

FOUR

MATHEMATICAL DEFINITIONS OF TRANSFORMS

We use notation with a general space dimensionality 𝑑, which will be 1, 2, or 3, in our library. The arbitrary (ie
nonuniform) points in space are denoted x𝑗 ∈ R𝑑, 𝑗 = 1, . . . ,𝑀 . We will see that for type 1 and type 2, without loss
of generality one could restrict to the periodic box [−𝜋, 𝜋)𝑑. For type 1 and type 3, each such NU point carries a given
associated strength 𝑐𝑗 ∈ C. Type 1 and type 2 involve the Fourier “modes” (Fourier series coefficients) with integer
frequency indices lying in the Cartesian product set

𝐾 = 𝐾𝑁1,...,𝑁𝑑
:= 𝐾𝑁1

×𝐾𝑁2
× · · · ×𝐾𝑁𝑑

,

where

𝐾𝑁𝑖 :=

{︂
{−𝑁𝑖/2, . . . , 𝑁𝑖/2− 1}, 𝑁𝑖 even,
{−(𝑁𝑖 − 1)/2, . . . , (𝑁𝑖 − 1)/2}, 𝑁𝑖 odd.

For instance, 𝐾10 = {−5,−4, . . . , 4}, whereas 𝐾11 = {−5,−4, . . . , 5}, and so 𝐾10,11 =
{(−5,−5), (−4,−5), . . . , (4,−5), (−5,−4), (−4,−4), . . . , (3, 5), (4, 5)}. Note that the ordering in the last
case is with the first index “fast”, second “slow”; this matches the storage ordering in the library interface. Thus, in the
1D case 𝐾 is an interval containing 𝑁1 integer indices, in 2D it is a list of 𝑁1𝑁2 index pairs (which may be thought of
as a rectangle of frequencies), and in 3D it is a list of 𝑁1𝑁2𝑁3 index triplets (which may be thought of as a cuboid).

Then the type 1 (nonuniform to uniform, aka “adjoint”) NUFFT evaluates

𝑓k :=

𝑀∑︁
𝑗=1

𝑐𝑗𝑒
±𝑖k·x𝑗 for k ∈ 𝐾 (4.1)

This can be viewed as evaluating a set of Fourier series coefficients due to sources with strengths 𝑐𝑗 at the arbitrary loca-
tions x𝑗 . Either sign of the imaginary unit in the exponential can be chosen in the interface. Note that our normalization
differs from that of references [DR,GL].

The type 2 (U to NU, aka “forward”) NUFFT evaluates

𝑐𝑗 :=
∑︁
k∈𝐾

𝑓k𝑒
±𝑖k·x𝑗 for 𝑗 = 1, . . . ,𝑀 (4.2)

This is the adjoint of the type 1, ie the evaluation of a given Fourier series at a set of arbitrary points. Both type 1 and
type 2 transforms are invariant under translations of the NU points by multiples of 2𝜋, thus one could require that all
NU points live in the origin-centered box [−𝜋, 𝜋)𝑑. In fact, as a compromise between library speed, and flexibility for
the user (for instance, to avoid boundary points being flagged as outside of this box due to round-off error), our library
only requires that the NU points lie in the three-times-bigger box x𝑗 ∈ [−3𝜋, 3𝜋]𝑑. This allows the user to choose
a convenient periodic domain that does not touch this three-times-bigger box. However, there may be a slight speed
increase if most points fall in [−𝜋, 𝜋)𝑑.

Finally, the type 3 (NU to NU) transform does not have restrictions on the NU points, and there is no periodicity. Let
x𝑗 ∈ R𝑑, 𝑗 = 1, . . . ,𝑀 , be NU locations, with strengths 𝑐𝑗 ∈ C, and let s𝑘, 𝑘 = 1, . . . , 𝑁 be NU frequencies. Then
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the type 3 transform evaluates:

𝑓𝑘 :=

𝑀∑︁
𝑗=1

𝑐𝑗𝑒
±𝑖s𝑘·x𝑗 for 𝑘 = 1, . . . , 𝑁 (4.3)

For all three transforms, the computational effort scales like the product of the space-bandwidth products (real-space
width times frequency-space width) in each dimension. For type 1 and type 2 this means near-linear scaling in the total
number of modes 𝑁 := 𝑁1 . . . 𝑁𝑑. However, be warned that for type 3 this means that, even if 𝑁 and 𝑀 are small,
if the product of the tightest intervals enclosing the coordinates of x𝑗 and s𝑘 is large, the algorithm will be inefficient.
For such NU points, a direct sum should be used instead.

We emphasise that the NUFFT tasks that this library performs should not be confused with either the discrete Fourier
transform (DFT), the (continuous) Fourier transform (although it may be used to approximate this via a quadrature
rule), or the inverse NUFFT (the iterative solution of the linear system arising from nonuniform Fourier sampling,
as in, eg, MRI). It is also important to know that, for NU points, the type 1 is not the inverse of the type 2. See the
references for clarification.
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CHAPTER

FIVE

EXAMPLE USAGE FROM C++ AND C

5.1 Quick-start example in C++

Here’s how to perform a 1D type-1 transform in double precision from C++, using STL complex vectors. First include
our header, and some others needed for the demo:

#include "finufft.h"
#include <vector>
#include <complex>
#include <stdlib.h>

We need nonuniform points x and complex strengths c. Let’s create random ones for now:

int M = 1e7; // number of nonuniform points
vector<double> x(M);
vector<complex<double> > c(M);
complex<double> I = complex<double>(0.0,1.0); // the imaginary unit
for (int j=0; j<M; ++j) {
x[j] = M_PI*(2*((double)rand()/RAND_MAX)-1); // uniform random in [-pi,pi)
c[j] = 2*((double)rand()/RAND_MAX)-1 + I*(2*((double)rand()/RAND_MAX)-1);

}

With N as the desired number of Fourier mode coefficients, allocate their output array:

int N = 1e6; // number of output modes
vector<complex<double> > F(N);

Now do the NUFFT (with default options, indicated by the NULL in the following call). Since the interface is C-
compatible, we pass pointers to the start of the arrays (rather than C++-style vector objects), and also pass N:

int ier = finufft1d1(M,&x[0],&c[0],+1,1e-9,N,&F[0],NULL);

This fills F with the output modes, in increasing ordering with the integer frequency indices from -N/2 up to N/2-1
(since N is even; for odd is would be -(N-1)/2 up to (N-1)/2). The transform (107 points to 106 modes) takes 0.4
seconds on a laptop. The index is thus offset by N/2 (this is integer division in the odd case), so that frequency k is
output in F[N/2 + k]. Here +1 sets the sign of 𝑖 in the exponentials (see definitions), 1e-9 requests 9-digit relative
tolerance, and ier is a status output which is zero if successful (otherwise see error codes).

Note: FINUFFT works with a periodicity of 2𝜋 for type 1 and 2 transforms; see definitions. For example, nonuniform
points 𝑥 = ±𝜋 are equivalent. Points must lie in the input domain [−3𝜋, 3𝜋), which allows the user to assume a
convenient periodic domain such as [−𝜋, 𝜋) or [0, 2𝜋). To handle points outside of [−3𝜋, 3𝜋) the user must fold them
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back into this domain before passing to FINUFFT. FINUFFT does not handle this case, for speed reasons. To use a
different periodicity, linearly rescale your coordinates.

If instead you want to change some options, first put default values in a finufft_opts struct, make your changes, then
pass the pointer to FINUFFT:

finufft_opts* opts = new finufft_opts;
finufft_default_opts(opts);
opts->debug = 1; // prints timing/debug info
int ier = finufft1d1(M,&x[0],&c[0],+1,tol,N,&F[0],opts);

Warning:

• Without the finufft_default_opts call, options may take on arbitrary values which may cause a crash.

• Note that, as of version 2.0, opts is passed as a pointer in both places.

See examples/simple1d1.cpp for a simple full working demo of the above, including a test of the math. If you instead
use single-precision arrays, replace the tag finufft by finufftf in each command; see examples/simple1d1f.
cpp.

From the examples/ directory, to compile on a linux/GCC system, linking to the static library, use eg:

g++ simple1d1.cpp -o simple1d1 -I../include ../lib-static/libfinufft.a -lfftw3_omp -
→˓lfftw3

Executing ./simple1d1 should now work. Better is instead to link to the dynamic shared (.so) library, via eg:

g++ simple1d1.cpp -o simple1d1 -I../include -Wl,-rpath,$FINUFFT/lib/ -lfinufft

where $FINUFFT must be replaced by (or be an environment variable set to) the absolute install path for this repository.
Notice how rpath was used to make an executable that may be called from, or moved to, anywhere. The examples
and test directories are good places to see further usage examples. The documentation for all 18 simple interfaces,
and the more flexible guru interface, is further down this page.

5.2 Quick-start example in C

The FINUFFT C++ interface is intentionally also C-compatible, for simplity. Thus, to use from C, the above example
only needs to replace the C++ vector with C-style array creation. Using C99 style, the above code, with options
setting, becomes:

#include <finufft.h>
#include <stdlib.h>
#include <complex.h>

int M = 1e7; // number of nonuniform points
double* x = (double *)malloc(sizeof(double)*M);
double complex* c = (double complex*)malloc(sizeof(double complex)*M);
for (int j=0; j<M; ++j) {
x[j] = M_PI*(2*((double)rand()/RAND_MAX)-1); // uniform random in [-pi,pi)
c[j] = 2*((double)rand()/RAND_MAX)-1 + I*(2*((double)rand()/RAND_MAX)-1);

(continues on next page)
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}
int N = 1e6; // number of modes
double complex* F = (double complex*)malloc(sizeof(double complex)*N);
finufft_opts opts; // make an opts struct
finufft_default_opts(&opts); // set default opts (must do this)
opts.debug = 2; // more debug/timing to stdout
int ier = finufft1d1(M,x,c,+1,1e-9,N,F,&opts);

// (now do something with F here!...)

free(x); free(c); free(F);

See examples/simple1d1c.c and examples/simple1d1cf.c for double- and single-precision C examples, includ-
ing the math check to insure the correct indexing of output modes.

5.3 2D example in C++

We assume Fortran-style contiguous multidimensional arrays, as opposed to C-style arrays of pointers; this allows the
widest compatibility with other languages. Assuming the same headers as above, we first create points (𝑥𝑗 , 𝑦𝑗) in the
square [−𝜋, 𝜋)2, and strengths as before:

int M = 1e7; // number of nonuniform points
vector<double> x(M), y(M);
vector<complex<double> > c(M);
for (int j=0; j<M; ++j) {
x[j] = M_PI*(2*((double)rand()/RAND_MAX)-1);
y[j] = M_PI*(2*((double)rand()/RAND_MAX)-1);
c[j] = 2*((double)rand()/RAND_MAX)-1 + I*(2*((double)rand()/RAND_MAX)-1);

}

Let’s say we want N1=1000 by N2=2000 2D Fourier coefficients. We allocate and do the (default options) transform
thus:

int N1=1000, N2=2000;
vector<complex<double> > F(N1*N2);
int ier = finufft2d1(M,&x[0],&y[0], &c[0], +1, 1e-6, N1, N2, &F[0], NULL);

This transform takes 0.6 seconds on a laptop. The modes have increasing ordering of integer frequency indices from
-N1/2 up to N1/2-1 in the fast (x) dimension, then indices from -N2/2 up to N2/2-1 in the slow (y) dimension (since
both N1 and N2 are even). So, the output frequency (k1,k2) is found in F[N1/2 + k1 + (N2/2 + k2)*N1].

See opts.modeord in Options to instead use FFT-style mode ordering, which simply differs by an “fftshift” (as it is
commonly called).

See examples/simple2d1.cpp for an example with a math check, to insure that the mode indexing is correctly
understood.
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5.4 Vectorized interface example

A common use case is to perform a stack of identical transforms with the same size and nonuniform points, but for
new strength vectors. (Applications include interpolating vector-valued data, or processing MRI images collected with
a fixed set of k-space sample points.) Because it amortizes sorting, FFTW planning, and FFTW plan lookup, it can be
faster to use a “vectorized” interface (which does the entire stack in one call) than to repeatedly call the above “simple”
interfaces. This is especially true for many small problems. Here we show how to do a stack of ntrans=10 1D type
1 NUFFT transforms, in C++, assuming the same headers as in the first example above. The strength data vectors are
taken to be contiguous (the whole first vector, followed by the second, etc, rather than interleaved.) Ie, viewed as a
matrix in Fortran storage, each column is a strength vector.

int ntrans = 10; // how many transforms
int M = 1e7; // number of nonuniform points
vector<double> x(M);
vector<complex<double> > c(M*ntrans); // ntrans strength vectors
complex<double> I = complex<double>(0.0,1.0); // the imaginary unit
for (int j=0; j<M; ++j)
x[j] = M_PI*(2*((double)rand()/RAND_MAX)-1);

for (int j=0; j<M*ntrans; ++j) // fill all ntrans vectors...
c[j] = 2*((double)rand()/RAND_MAX)-1 + I*(2*((double)rand()/RAND_MAX)-1);

int N = 1e6; // number of output modes
vector<complex<double> > F(N*trans); // ntrans output vectors
int ier = finufft1d1(M,&x[0],&c[0],+1,1e-9,N,&F[0],NULL); // default opts

This takes 2.6 seconds on a laptop, around 1.4x faster than making 10 separate “simple” calls. The frequency index k
in transform number t (zero-indexing the transforms) is in F[k + (int)N/2 + N*t].

See examples/many1d1.cpp and test/finufft?dmany_test.cpp for more examples.

5.5 Guru interface examples

If you want more flexibility than the above, use the “guru” interface: this is similar to that of FFTW3, and to the main
interface of NFFT3. It lets you change the nonuniform points while keeping the same pointer to an FFTW plan for a
particular number of stacked transforms with a certain number of modes. This avoids the overhead (typically 0.1 ms
per thread) of FFTW checking for previous wisdom which would be significant when doing many small transforms.
You may also send in a new set of stacked strength data (for type 1 and 3, or coefficients for type 2), reusing the existing
FFTW plan and sorted points. Now we redo the above 2D type 1 C++ example with the guru interface.

One first makes a plan giving transform parameters, but no data:

// (assume x, y, c are filled, and F allocated, as in the 2D code above...)
int type=1, dim=2, ntrans=1;
int64_t Ns[] = {1000,2000}; // N1,N2 as 64-bit int array
// step 1: make a plan...
finufft_plan plan;
int ier = finufft_makeplan(type, dim, Ns, +1, ntrans, 1e-6, &plan, NULL);
// step 2: send in pointers to M nonuniform points (just x, y in this case)...
finufft_setpts(plan, M, &x[0], &y[0], NULL, 0, NULL, NULL, NULL);
// (user should not change x, y nonuniform point arrays here!)
// step 3: do the planned transform to the c strength data, output to F...
finufft_execute(plan, &c[0], &F[0]);
// ... you could now send in new points, and/or do transforms with new c data

(continues on next page)
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// ...
// step 4: when done, free the memory used by the plan...
finufft_destroy(plan);

This writes the Fourier coefficients to F just as in the earlier 2D example. One difference from the above simple and
vectorized interfaces is that the int64_t type (aka long long int) is needed since the Fourier coefficient dimensions
are passed as an array.

Warning: You must not change the nonuniform point arrays (here x, y) between passing them to finufft_setpts
and performing finufft_execute. The latter call expects these arrays to be unchanged. We chose this style of
interface since it saves RAM and time (by avoiding unnecessary duplication), allowing the largest possible problems
to be solved.

Warning: You must destroy a plan before making a new plan using the same plan object, otherwise a memory
leak results.

The complete code with a math test is in examples/guru2d1.cpp, and for more examples see examples/guru1d1*.
c*

Using the guru interface to perform a vectorized transform (multiple 1D type 1 transforms each with the same nonuni-
form points) is demonstrated in examples/gurumany1d1.cpp. This is similar to the single-command vectorized
interface, but allowing more control (changing the nonuniform points without re-planning the FFT, etc).

5.6 Thread safety for single-threaded transforms, and global state

It is possible to call FINUFFT from within multithreaded code, e.g. in an OpenMP parallel block. In this case opts.
nthreads=1 should be set, otherwise a segfault will occur. This is useful if you don’t want to synchronize independent
transforms. For demos of this “parallelize over single-threaded transforms” use case, see the following, which are built
as part of the make examples task:

• examples/threadsafe1d1 which runs a 1D type-1 separately on each thread, checking the math, and

• examples/threadsafe2d2f which runs a 2D type-2 on each “slice” (in the MRI language), parallelized over
slices with an OpenMP parallel for loop. (In this code there is no math check, just status check.)

However, if you have multiple transforms with the same nonuniform points for each transform, it is probably much
faster to use the vectorized interface, and do all these transforms with a single such multithreaded FINUFFT call (see
examples/many1d1.cpp and examples/gurumany1d1.cpp). This may be less convenient if you want to leave your
slices unsynchronized.

Note: A design decision of FFTW is to have a global state which stores wisdom and settings. Such global state can
cause unforeseen effects on other routines that also use FFTW. In contrast, FINUFFT uses pointers to plans to store
its state, and does not have a global state (other than one static flag used as a lock on FFTW initialization in the
FINUFFT plan stage). This means different FINUFFT calls should not affect each other, although they may affect
other codes that use FFTW via FFTW’s global state.
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CHAPTER

SIX

DOCUMENTATION OF ALL C++ FUNCTIONS

All functions have double-precision (finufft) and single-precision (finufftf) versions. Do not forget this f suffix in
the latter case. We group the simple and vectorized interfaces together, by each of the nine transform types (dimensions
1,2,3, and types 1,2,3). The guru interface functions are defined at the end. You will also want to refer to the options
and error codes which apply to all 46 routines.

A reminder on Fourier mode ordering; see modeord. For example, if N1=8 in a 1D type 1 or type 2 transform:

• if opts.modeord=0: frequency indices are ordered -4,-3,-2,-1,0,1,2,3 (CMCL ordering)

• if opts.modeord=1: frequency indices are ordered 0,1,2,3,-4,-3,-2,-1 (FFT ordering)

The orderings are related by a “fftshift”. This holds for each dimension. Multidimensional arrays are passed by a
pointer to a contiguous Fortran-style array, with the “fastest” dimension x, then y (if present), then z (if present), then
transform number (if ntr>1). We do not use C/C++-style multidimensional arrays; this gives us the most flexibility
from several languages without loss of speed or memory due to unnecessary array copying.

In all of the simple, vectorized, and plan functions below you may either pass NULL as the last options argument to use
default options, or a pointer to a valid finufft_opts struct. In this latter case you will first need to create an options
struct then set default values by passing a pointer (here opts) to the following:

void finufft_default_opts(finufft_opts* opts)
void finufftf_default_opts(finufft_opts* opts)

Set values in a NUFFT options struct to their default values.

Be sure to use the first version for double-precision and the second for single-precision. You may then change options
with, for example, opts->debug=1; and then pass opts to the below routines.

6.1 Simple and vectorized interfaces

The “simple” interfaces (the first two listed in each block) perform a single transform, whereas the “vectorized” (the
last two listed in each block, with the word “many” in the function name) perform ntr transforms with the same set of
nonuniform points but stacked complex strengths or coefficients vectors.

Note: The motivations for the vectorized interface (and guru interface, see below) are as follows. 1) It is more efficient
to bin-sort the nonuniform points only once if there are not to change between transforms. 2) For small problems, certain
start-up costs cause repeated calls to the simple interface to be slower than necessary. In particular, we note that FFTW
takes around 0.1 ms per thread to look up stored wisdom, which for small problems (of order 10000 or less input and
output data) can, sadly, dominate the runtime.
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6.1.1 1D transforms

int finufft1d1(int64_t M, double* x, complex<double>* c, int iflag, double eps, int64_t
N1, complex<double>* f, finufft_opts* opts)
int finufftf1d1(int64_t M, float* x, complex<float>* c, int iflag, float eps, int64_t N1,
complex<float>* f, finufftf_opts* opts)

int finufft1d1many(int ntr, int64_t M, double* x, complex<double>* c, int iflag, double
eps, int64_t N1, complex<double>* f, finufft_opts* opts)
int finufftf1d1many(int ntr, int64_t M, float* x, complex<float>* c, int iflag, float
eps, int64_t N1, complex<float>* f, finufftf_opts* opts)

1D complex nonuniform FFT of type 1 (nonuniform to uniform).

Computes to precision eps, via a fast algorithm, one or more transforms of the form:

M-1
f[k1] = SUM c[j] exp(+/-i k1 x(j)) for -N1/2 <= k1 <= (N1-1)/2

j=0

Inputs:
ntr how many transforms (only for vectorized "many" functions, else ntr=1)
M number of nonuniform point sources
x nonuniform points (length M real array)
c source strengths (size M*ntr complex array)
iflag if >=0, uses +i in complex exponential, otherwise -i
eps desired relative precision; smaller is slower. This can be chosen

from 1e-1 down to ~ 1e-14 (in double precision) or 1e-6 (in single)
N1 number of output Fourier modes to be computed
opts pointer to options struct (see opts.rst), or NULL for defaults

Outputs:
f Fourier mode coefficients (size N1*ntr complex array)
return value 0: success, 1: success but warning, >1: error (see error.rst)

Notes:
* complex arrays interleave Re, Im values, and their size is stated with
dimensions ordered fastest to slowest.

* Fourier frequency indices in each dimension i are the integers lying
in [-Ni/2, (Ni-1)/2]. See above, and modeord in opts.rst for possible orderings.

int finufft1d2(int64_t M, double* x, complex<double>* c, int iflag, double eps, int64_t
N1, complex<double>* f, finufft_opts* opts)
int finufftf1d2(int64_t M, float* x, complex<float>* c, int iflag, float eps, int64_t N1,
complex<float>* f, finufftf_opts* opts)

int finufft1d2many(int ntr, int64_t M, double* x, complex<double>* c, int iflag, double
eps, int64_t N1, complex<double>* f, finufft_opts* opts)
int finufftf1d2many(int ntr, int64_t M, float* x, complex<float>* c, int iflag, float
eps, int64_t N1, complex<float>* f, finufftf_opts* opts)

1D complex nonuniform FFT of type 2 (uniform to nonuniform).

(continues on next page)
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Computes to precision eps, via a fast algorithm, one or more transforms of the form:

c[j] = SUM f[k1] exp(+/-i k1 x[j]) for j = 0,...,M-1
k1

where the sum is over integers -N1/2 <= k1 <= (N1-1)/2.

Inputs:
ntr how many transforms (only for vectorized "many" functions, else ntr=1)
M number of nonuniform point targets
x nonuniform points (length M real array)
iflag if >=0, uses +i in complex exponential, otherwise -i
eps desired relative precision; smaller is slower. This can be chosen

from 1e-1 down to ~ 1e-14 (in double precision) or 1e-6 (in single)
N1 number of input Fourier modes
f Fourier mode coefficients (size N1*ntr complex array)
opts pointer to options struct (see opts.rst), or NULL for defaults

Outputs:
c values at nonuniform point targets (size M*ntr complex array)
return value 0: success, 1: success but warning, >1: error (see error.rst)

Notes:
* complex arrays interleave Re, Im values, and their size is stated with
dimensions ordered fastest to slowest.

* Fourier frequency indices in each dimension i are the integers lying
in [-Ni/2, (Ni-1)/2]. See above, and modeord in opts.rst for possible orderings.

int finufft1d3(int64_t M, double* x, complex<double>* c, int iflag, double eps, int64_t
N, double* s, complex<double>* f, finufft_opts* opts)
int finufftf1d3(int64_t M, float* x, complex<float>* c, int iflag, float eps, int64_t N,
float* s, complex<float>* f, finufftf_opts* opts)

int finufft1d3many(int ntr, int64_t M, double* x, complex<double>* c, int iflag, double
eps, int64_t N, double* s, complex<double>* f, finufft_opts* opts)
int finufftf1d3many(int ntr, int64_t M, float* x, complex<float>* c, int iflag, float
eps, int64_t N, float* s, complex<float>* f, finufftf_opts* opts)

1D complex nonuniform FFT of type 3 (nonuniform to nonuniform).

Computes to precision eps, via a fast algorithm, one or more transforms of the form:

M-1
f[k] = SUM c[j] exp(+-i s[k] x[j]), for k = 0,...,N-1

j=0

Inputs:
ntr how many transforms (only for vectorized "many" functions, else ntr=1)
M number of nonuniform point sources
x nonuniform points in R (length M real array)
c source strengths (size M*ntr complex array)
iflag if >=0, uses +i in complex exponential, otherwise -i
eps desired relative precision; smaller is slower. This can be chosen

(continues on next page)
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from 1e-1 down to ~ 1e-14 (in double precision) or 1e-6 (in single)
N number of nonuniform frequency targets
s nonuniform frequency targets in R (length N real array)
opts pointer to options struct (see opts.rst), or NULL for defaults

Outputs:
f Fourier transform values at targets (size N*ntr complex array)
return value 0: success, 1: success but warning, >1: error (see error.rst)

Notes:
* complex arrays interleave Re, Im values, and their size is stated with
dimensions ordered fastest to slowest.

6.1.2 2D transforms

int finufft2d1(int64_t M, double* x, double* y, complex<double>* c, int iflag, double
eps, int64_t N1, int64_t N2, complex<double>* f, finufft_opts* opts)
int finufftf2d1(int64_t M, float* x, float* y, complex<float>* c, int iflag, float eps,
int64_t N1, int64_t N2, complex<float>* f, finufftf_opts* opts)

int finufft2d1many(int ntr, int64_t M, double* x, double* y, complex<double>* c, int
iflag, double eps, int64_t N1, int64_t N2, complex<double>* f, finufft_opts* opts)
int finufftf2d1many(int ntr, int64_t M, float* x, float* y, complex<float>* c, int iflag,
float eps, int64_t N1, int64_t N2, complex<float>* f, finufftf_opts* opts)

2D complex nonuniform FFT of type 1 (nonuniform to uniform).

Computes to precision eps, via a fast algorithm, one or more transforms of the form:

M-1
f[k1,k2] = SUM c[j] exp(+/-i (k1 x[j] + k2 y[j]))

j=0

for -N1/2 <= k1 <= (N1-1)/2, -N2/2 <= k2 <= (N2-1)/2.

Inputs:
ntr how many transforms (only for vectorized "many" functions, else ntr=1)
M number of nonuniform point sources
x,y nonuniform point coordinates (length M real arrays)
c source strengths (size M*ntr complex array)
iflag if >=0, uses +i in complex exponential, otherwise -i
eps desired relative precision; smaller is slower. This can be chosen

from 1e-1 down to ~ 1e-14 (in double precision) or 1e-6 (in single)
N1 number of output Fourier modes to be computed (x direction)
N2 number of output Fourier modes to be computed (y direction)
opts pointer to options struct (see opts.rst), or NULL for defaults

Outputs:
f Fourier mode coefficients (size N1*N2*ntr complex array)
return value 0: success, 1: success but warning, >1: error (see error.rst)

(continues on next page)
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Notes:
* complex arrays interleave Re, Im values, and their size is stated with
dimensions ordered fastest to slowest.

* Fourier frequency indices in each dimension i are the integers lying
in [-Ni/2, (Ni-1)/2]. See above, and modeord in opts.rst for possible orderings.

int finufft2d2(int64_t M, double* x, double* y, complex<double>* c, int iflag, double
eps, int64_t N1, int64_t N2, complex<double>* f, finufft_opts* opts)
int finufftf2d2(int64_t M, float* x, float* y, complex<float>* c, int iflag, float eps,
int64_t N1, int64_t N2, complex<float>* f, finufftf_opts* opts)

int finufft2d2many(int ntr, int64_t M, double* x, double* y, complex<double>* c, int
iflag, double eps, int64_t N1, int64_t N2, complex<double>* f, finufft_opts* opts)
int finufftf2d2many(int ntr, int64_t M, float* x, float* y, complex<float>* c, int iflag,
float eps, int64_t N1, int64_t N2, complex<float>* f, finufftf_opts* opts)

2D complex nonuniform FFT of type 2 (uniform to nonuniform).

Computes to precision eps, via a fast algorithm, one or more transforms of the form:

c[j] = SUM f[k1,k2] exp(+/-i (k1 x[j] + k2 y[j])) for j = 0,...,M-1
k1,k2

where the sum is over integers -N1/2 <= k1 <= (N1-1)/2,
-N2/2 <= k2 <= (N2-1)/2.

Inputs:
ntr how many transforms (only for vectorized "many" functions, else ntr=1)
M number of nonuniform point targets
x,y nonuniform point coordinates (length M real arrays)
iflag if >=0, uses +i in complex exponential, otherwise -i
eps desired relative precision; smaller is slower. This can be chosen

from 1e-1 down to ~ 1e-14 (in double precision) or 1e-6 (in single)
N1 number of input Fourier modes (x direction)
N2 number of input Fourier modes (y direction)
f Fourier mode coefficients (size N1*N2*ntr complex array)
opts pointer to options struct (see opts.rst), or NULL for defaults

Outputs:
c values at nonuniform point targets (size M*ntr complex array)
return value 0: success, 1: success but warning, >1: error (see error.rst)

Notes:
* complex arrays interleave Re, Im values, and their size is stated with
dimensions ordered fastest to slowest.

* Fourier frequency indices in each dimension i are the integers lying
in [-Ni/2, (Ni-1)/2]. See above, and modeord in opts.rst for possible orderings.

int finufft2d3(int64_t M, double* x, double* y, complex<double>* c, int iflag, double
eps, int64_t N, double* s, double* t, complex<double>* f, finufft_opts* opts)
int finufftf2d3(int64_t M, float* x, float* y, complex<float>* c, int iflag, float eps,
int64_t N, float* s, float* t, complex<float>* f, finufftf_opts* opts)

(continues on next page)
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int finufft2d3many(int ntr, int64_t M, double* x, double* y, complex<double>* c, int
iflag, double eps, int64_t N, double* s, double* t, complex<double>* f, finufft_opts*
opts)
int finufftf2d3many(int ntr, int64_t M, float* x, float* y, complex<float>* c, int iflag,
float eps, int64_t N, float* s, float* t, complex<float>* f, finufftf_opts* opts)

2D complex nonuniform FFT of type 3 (nonuniform to nonuniform).

Computes to precision eps, via a fast algorithm, one or more transforms of the form:

M-1
f[k] = SUM c[j] exp(+-i (s[k] x[j] + t[k] y[j])), for k = 0,...,N-1

j=0

Inputs:
ntr how many transforms (only for vectorized "many" functions, else ntr=1)
M number of nonuniform point sources
x,y nonuniform point coordinates in R^2 (length M real arrays)
c source strengths (size M*ntr complex array)
iflag if >=0, uses +i in complex exponential, otherwise -i
eps desired relative precision; smaller is slower. This can be chosen

from 1e-1 down to ~ 1e-14 (in double precision) or 1e-6 (in single)
N number of nonuniform frequency targets
s,t nonuniform frequency target coordinates in R^2 (length N real arrays)
opts pointer to options struct (see opts.rst), or NULL for defaults

Outputs:
f Fourier transform values at targets (size N*ntr complex array)
return value 0: success, 1: success but warning, >1: error (see error.rst)

Notes:
* complex arrays interleave Re, Im values, and their size is stated with
dimensions ordered fastest to slowest.

6.1.3 3D transforms

int finufft3d1(int64_t M, double* x, double* y, double* z, complex<double>* c, int iflag,
double eps, int64_t N1, int64_t N2, int64_t N3, complex<double>* f, finufft_opts* opts)
int finufftf3d1(int64_t M, float* x, float* y, float* z, complex<float>* c, int iflag,
float eps, int64_t N1, int64_t N2, int64_t N3, complex<float>* f, finufftf_opts* opts)

int finufft3d1many(int ntr, int64_t M, double* x, double* y, double* z, complex<double>*
c, int iflag, double eps, int64_t N1, int64_t N2, int64_t N3, complex<double>* f,
finufft_opts* opts)
int finufftf3d1many(int ntr, int64_t M, float* x, float* y, float* z, complex<float>* c,
int iflag, float eps, int64_t N1, int64_t N2, int64_t N3, complex<float>* f,
finufftf_opts* opts)

3D complex nonuniform FFT of type 1 (nonuniform to uniform).
(continues on next page)
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Computes to precision eps, via a fast algorithm, one or more transforms of the form:

M-1
f[k1,k2] = SUM c[j] exp(+/-i (k1 x[j] + k2 y[j] + k3 z[j]))

j=0

for -N1/2 <= k1 <= (N1-1)/2, -N2/2 <= k2 <= (N2-1)/2, -N3/2 <= k3 <= (N3-1)/2

Inputs:
ntr how many transforms (only for vectorized "many" functions, else ntr=1)
M number of nonuniform point sources
x,y,z nonuniform point coordinates (length M real arrays)
c source strengths (size M*ntr complex array)
iflag if >=0, uses +i in complex exponential, otherwise -i
eps desired relative precision; smaller is slower. This can be chosen

from 1e-1 down to ~ 1e-14 (in double precision) or 1e-6 (in single)
N1 number of output Fourier modes to be computed (x direction)
N2 number of output Fourier modes to be computed (y direction)
N3 number of output Fourier modes to be computed (z direction)
opts pointer to options struct (see opts.rst), or NULL for defaults

Outputs:
f Fourier mode coefficients (size N1*N2*N3*ntr complex array)
return value 0: success, 1: success but warning, >1: error (see error.rst)

Notes:
* complex arrays interleave Re, Im values, and their size is stated with
dimensions ordered fastest to slowest.

* Fourier frequency indices in each dimension i are the integers lying
in [-Ni/2, (Ni-1)/2]. See above, and modeord in opts.rst for possible orderings.

int finufft3d2(int64_t M, double* x, double* y, double* z, complex<double>* c, int iflag,
double eps, int64_t N1, int64_t N2, int64_t N3, complex<double>* f, finufft_opts* opts)
int finufftf3d2(int64_t M, float* x, float* y, float* z, complex<float>* c, int iflag,
float eps, int64_t N1, int64_t N2, int64_t N3, complex<float>* f, finufftf_opts* opts)

int finufft3d2many(int ntr, int64_t M, double* x, double* y, double* z, complex<double>*
c, int iflag, double eps, int64_t N1, int64_t N2, int64_t N3, complex<double>* f,
finufft_opts* opts)
int finufftf3d2many(int ntr, int64_t M, float* x, float* y, float* z, complex<float>* c,
int iflag, float eps, int64_t N1, int64_t N2, int64_t N3, complex<float>* f,
finufftf_opts* opts)

3D complex nonuniform FFT of type 2 (uniform to nonuniform).

Computes to precision eps, via a fast algorithm, one or more transforms of the form:

c[j] = SUM f[k1,k2,k3] exp(+/-i (k1 x[j] + k2 y[j] + k3 z[j]))
k1,k2,k3

for j = 0,...,M-1,
(continues on next page)
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where the sum is over integers -N1/2 <= k1 <= (N1-1)/2,
-N2/2 <= k2 <= (N2-1)/2,
-N3/2 <= k3 <= (N3-1)/2.

Inputs:
ntr how many transforms (only for vectorized "many" functions, else ntr=1)
M number of nonuniform point targets
x,y,z nonuniform point coordinates (length M real arrays)
iflag if >=0, uses +i in complex exponential, otherwise -i
eps desired relative precision; smaller is slower. This can be chosen

from 1e-1 down to ~ 1e-14 (in double precision) or 1e-6 (in single)
N1 number of input Fourier modes (x direction)
N2 number of input Fourier modes (y direction)
N3 number of input Fourier modes (z direction)
f Fourier mode coefficients (size N1*N2*N3*ntr complex array)
opts pointer to options struct (see opts.rst), or NULL for defaults

Outputs:
c values at nonuniform point targets (size M*ntr complex array)
return value 0: success, 1: success but warning, >1: error (see error.rst)

Notes:
* complex arrays interleave Re, Im values, and their size is stated with
dimensions ordered fastest to slowest.

* Fourier frequency indices in each dimension i are the integers lying
in [-Ni/2, (Ni-1)/2]. See above, and modeord in opts.rst for possible orderings.

int finufft3d3(int64_t M, double* x, double* y, double* z, complex<double>* c, int iflag,
double eps, int64_t N, double* s, double* t, double* u, complex<double>* f, finufft_opts*
opts)
int finufftf3d3(int64_t M, float* x, float* y, float* z, complex<float>* c, int iflag,
float eps, int64_t N, float* s, float* t, float* u, complex<float>* f, finufftf_opts*
opts)

int finufft3d3many(int ntr, int64_t M, double* x, double* y, double* z, complex<double>*
c, int iflag, double eps, int64_t N, double* s, double* t, double* u, complex<double>* f,
finufft_opts* opts)
int finufftf3d3many(int ntr, int64_t M, float* x, float* y, float* z, complex<float>* c,
int iflag, float eps, int64_t N, float* s, float* t, float* u, complex<float>* f,
finufftf_opts* opts)

3D complex nonuniform FFT of type 3 (nonuniform to nonuniform).

Computes to precision eps, via a fast algorithm, one or more transforms of the form:

M-1
f[k] = SUM c[j] exp(+-i (s[k] x[j] + t[k] y[j] + u[k] z[j])),

j=0
for k = 0,...,N-1.

Inputs:
ntr how many transforms (only for vectorized "many" functions, else ntr=1)
M number of nonuniform point sources
x,y,z nonuniform point coordinates in R^3 (length M real arrays)

(continues on next page)
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c source strengths (size M*ntr complex array)
iflag if >=0, uses +i in complex exponential, otherwise -i
eps desired relative precision; smaller is slower. This can be chosen

from 1e-1 down to ~ 1e-14 (in double precision) or 1e-6 (in single)
N number of nonuniform frequency targets
s,t,u nonuniform frequency target coordinates in R^3 (length N real arrays)
opts pointer to options struct (see opts.rst), or NULL for defaults

Outputs:
f Fourier transform values at targets (size N*ntr complex array)
return value 0: success, 1: success but warning, >1: error (see error.rst)

6.2 Guru plan interface

This provides more flexibility than the simple or vectorized interfaces. Any transform requires (at least) calling the
following four functions in order. However, within this sequence one may insert repeated execute calls, or another
setpts followed by more execute calls, as long as the transform sizes (and number of transforms ntr) are consistent
with those that have been set in the plan and in setpts. Keep in mind that setpts retains pointers to the user’s list of
nonuniform points, rather than copying these points; thus the user must not change their nonuniform point arrays until
after any execute calls that use them.

Note: The plan object (type finufft{f}_plan) is an opaque pointer; the public interface specifies no more details
that that. Under the hood in our library the plan happens to point to a C++ object of type finufft{f}_plan_s, whose
internal details the library user should not attempt to access, nor to rely on.

int finufft_makeplan(int type, int dim, int64_t* nmodes, int iflag, int ntr, double eps,
finufft_plan* plan, finufft_opts* opts)
int finufftf_makeplan(int type, int dim, int64_t* nmodes, int iflag, int ntr, float eps,
finufftf_plan* plan, finufftf_opts* opts)

Make a plan to perform one or more general transforms.

Under the hood, for type 1 and 2, this does FFTW planning and kernel Fourier
transform precomputation. For type 3, this does very little, since the FFT
sizes are not yet known.

Inputs:
type type of transform (1,2, or 3)
dim spatial dimension (1,2, or 3)
nmodes if type is 1 or 2, numbers of Fourier modes (length dim array),

ie, {N1} in 1D, {N1,N2} in 2D, or {N1,N2,N3} in 3D.
If type is 3, it is unused.

iflag if >=0, uses +i in complex exponential, otherwise -i
ntr how many transforms (only for vectorized "many" functions, else ntr=1)
eps desired relative precision; smaller is slower. This can be chosen

from 1e-1 down to ~ 1e-14 (in double precision) or 1e-6 (in single)
opts pointer to options struct (see opts.rst), or NULL for defaults

Outputs:
(continues on next page)
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plan plan object (under the hood this is a pointer to another struct)
return value 0: success, 1: success but warning, >1: error (see error.rst)

Notes:
* All available threads are planned by default (but see opts.nthreads)
* The vectorized (many vector) plan, ie ntrans>1, can be much faster
than repeated calls with the same nonuniform points.
Note that here the I/O data ordering is stacked rather than interleaved.

* For more details about the fields in the opts pointer, see opts.rst

int finufft_setpts(finufft_plan plan, int64_t M, double* x, double* y, double* z, int64_t
N, double* s, double* t, double* z)
int finufftf_setpts(finufftf_plan plan, int64_t M, float* x, float* y, float* z, int64_t
N, float* s, float* t, float* z)

Input nonuniform points with coordinates x (and possibly y, and possibly z),
and, if type 3, nonuniform frequency target coordinates s (and possibly t,
and possibly u), into an existing plan. If type is 1 or 2 then the last four
arguments are ignored. Unused dimensions are ignored.

Under the hood, for type 1 or 2, this routine bin-sorts the points (storing
just the permutation rather than new copies of the coordinates). For type
3 it also bin-sorts the frequencies, chooses two levels of grid sizes, then
plans the inner type 2 call (interpolation and FFTW).

Inputs:
M number of nonuniform spatial points (used by all types)
x nonuniform point x-coordinates (length M real array)
y if dim>1, nonuniform point y-coordinates (length M real array),

ignored otherwise
z if dim>2, nonuniform point z-coordinates (length M real array),

ignored otherwise
N number of nonuniform frequency targets (type 3 only, ignored

otherwise)
s nonuniform frequency x-coordinates (length N real array)
t if dim>1, nonuniform frequency y-coordinates (length N real array),

ignored otherwise
u if dim>2, nonuniform frequency z-coordinates (length N real array),

ignored otherwise

Input/Outputs:
plan plan object

Outputs:
return value 0: success, 1: success but warning, >1: error (see error.rst)

Notes:
* The coordinates in x (and if nonempty, y and z) can be any real numbers.
For type 1 and 2 transforms, their definitions imply that that the
result is invariant to adding any multiple of 2pi to these coordinates.
(Internally, each coordinate is folded to [-pi,pi); as usual for
periodic functions, rounding errors are inevitable if much larger values

(continues on next page)
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are input.) For type 1 these coordinates are "sources", whereas for type
2, they are "targets".
For type 3 the coordinates are "sources", and the "frequency targets"
s (and if nonempty, t and u) may also be any real numbers; the only
restriction for type 3 is that the product of source and target domain
sizes is not too large (it controls the internal fine grid size).

* The coordinates pointed to by any used arrays x, y, z, s, t, u must
not be changed between this call and the below execute call!

int finufft_execute(finufft_plan plan, complex<double>* c, complex<double>* f)
int finufftf_execute(finufftf_plan plan, complex<float>* c, complex<float>* f)

Perform one or more NUFFT transforms using previously entered nonuniform
points and an existing plan. To summarize, this maps
type 1: c -> f
type 2: f -> c
type 3: c -> f

Inputs:
plan plan object

Input/Outputs:
c For types 1 and 3, the input strengths at the nonuniform point

sources (size M*ntr complex array).
If type 2, the output values at the nonuniform point targets
(size M*ntr complex array).

f If type 1, the output Fourier mode coefficients (size N1*ntr or
N1*N2*ntr or N1*N2*N3*ntr complex array, when dim = 1, 2, or 3
respectively).
If type 2, the input Fourier mode coefficients (size N1*ntr or
N1*N2*ntr or N1*N2*N3*ntr complex array, when dim = 1, 2, or 3
respectively).
If type 3, the output values at the nonuniform frequency targets
(size N*ntr complex array).

Outputs:
return value 0: success, 1: success but warning, >1: error (see error.rst)

Notes:
* The contents of the arrays x, y, z, s, t, u must not have changed since
the finufft_setpts call that read them. The execution rereads them
(this way of doing business saves RAM).

* f and c are contiguous Fortran-style arrays with the transform number,
if ntr>1, being the "slowest" (outer) dimension.

int finufft_destroy(finufft_plan plan)
int finufftf_destroy(finufftf_plan plan)

Deallocate a plan object. This must be used upon clean-up, or before reusing
a plan in another call to finufft_makeplan.

(continues on next page)
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Inputs/Outputs:
plan plan object

Outputs:
return value 0: success, 1: success but warning, >1: error (see error.rst)
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CHAPTER

SEVEN

OPTIONS PARAMETERS

Aside from the mandatory inputs (dimension, type, nonuniform points, strengths or coefficients, and, in
C++/C/Fortran/MATLAB, sign of the imaginary unit and tolerance) FINUFFT has optional parameters. These ad-
just the workings of the algorithm, change the output format, or provide debug/timing text to stdout. Sensible default
options are chosen, so that the new user need not worry about changing them. However, users wanting to try to increase
speed or see more timing breakdowns will want to change options from their defaults. See each language doc page for
how this is done, but is generally by creating an options structure, changing fields from their defaults, then passing this
(or a pointer to it) to the simple, vectorized, or guru makeplan routines. Recall how to do this from C++:

// (... set up M,x,c,tol,N, and allocate F here...)
finufft_opts* opts;
finufft_default_opts(opts);
opts->debug = 1;
int ier = finufft1d1(M,x,c,+1,tol,N,F,opts);

This setting produces more timing output to stdout.

Warning: In C/C++ and Fortran, don’t forget to call the command which sets default options
(finufft_default_opts or finufftf_default_opts) before you start changing them and passing them to
FINUFFT.

7.1 Summary and quick advice

Here is a 1-line summary of each option, taken from the code (the header include/finufft_opts.h):

// FINUFFT options:
// data handling opts...
int modeord; // (type 1,2 only): 0 CMCL-style increasing mode order

// 1 FFT-style mode order
int chkbnds; // [DEPRECATED] 0 don't check NU pts in [-3pi,3pi), 1 do (<few

→˓% slower)

// diagnostic opts...
int debug; // 0 silent, 1 some timing/debug, or 2 more
int spread_debug; // spreader: 0 silent, 1 some timing/debug, or 2 tonnes
int showwarn; // 0 don't print warnings to stderr, 1 do

// algorithm performance opts...
int nthreads; // number of threads to use, or 0 uses all available

(continues on next page)
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int fftw; // plan flags to FFTW (FFTW_ESTIMATE=64, FFTW_MEASURE=0,...)
int spread_sort; // spreader: 0 don't sort, 1 do, or 2 heuristic choice
int spread_kerevalmeth; // spreader: 0 exp(sqrt()), 1 Horner piecewise poly (faster)
int spread_kerpad; // (exp(sqrt()) only): 0 don't pad kernel to 4n, 1 do
double upsampfac; // upsampling ratio sigma: 2.0 std, 1.25 small FFT, 0.0 auto
int spread_thread; // (vectorized ntr>1 only): 0 auto, 1 seq multithreaded,

// 2 parallel single-thread spread
int maxbatchsize; // (vectorized ntr>1 only): max transform batch, 0 auto
int spread_nthr_atomic; // if >=0, threads above which spreader OMP critical goes␣

→˓atomic
int spread_max_sp_size; // if >0, overrides spreader (dir=1) max subproblem size

Here are their default settings (from src/finufft.cpp:finufft_default_opts):

o->modeord = 0;
o->chkbnds = 1;

o->debug = 0;
o->spread_debug = 0;
o->showwarn = 1;

o->nthreads = 0;
o->fftw = FFTW_ESTIMATE; //
o->spread_sort = 2;
o->spread_kerevalmeth = 1;
o->spread_kerpad = 1;
o->upsampfac = 0.0;
o->spread_thread = 0;
o->maxbatchsize = 0;
o->spread_nthr_atomic = -1;
o->spread_max_sp_size = 0;

As for quick advice, the main options you’ll want to play with are:

• modeord to flip (“fftshift”) the Fourier mode ordering

• debug to look at timing output (to determine if your problem is spread/interpolation dominated, vs FFT domi-
nated)

• nthreads to run with a different number of threads than the current maximum available through OpenMP (a
large number can sometimes be detrimental, and very small problems can sometimes run faster on 1 thread)

• fftw to try slower plan modes which give faster transforms. The next natural one to try is FFTW_MEASURE (look
at the FFTW3 docs)

See Troubleshooting for good advice on trying options, and read the full options descriptions below.

Warning: Some of the options are for experts only, and will result in slow or incorrect results. Please test options
in a small known test case so that you understand their effect.
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7.2 Documentation of all options

7.2.1 Data handling options

modeord: Fourier coefficient frequency index ordering in every dimension. For type 1, this is for the output; for type
2 the input. It has no effect in type 3. Here we use N to denote the size in any of the relevant dimensions:

• if modeord=0: frequency indices are in increasing ordering, namely {−𝑁/2,−𝑁/2 + 1, . . . , 𝑁/2 − 1} if 𝑁
is even, or {−(𝑁 − 1)/2, . . . , (𝑁 − 1)/2} if 𝑁 is odd. For example, if N=6 the indices are -3,-2,-1,0,1,2,
whereas if N=7 they are -3,-2,-1,0,1,2,3. This is called “CMCL ordering” since it is that of the CMCL
NUFFT.

• if modeord=1: frequency indices are ordered as in the usual FFT, increasing from zero then jumping to negative
indices half way along, namely {0, 1, . . . , 𝑁/2−1,−𝑁/2,−𝑁/2+1, . . . ,−1} if 𝑁 is even, or {0, 1, . . . , (𝑁 −
1)/2,−(𝑁 − 1)/2, . . . ,−1} if 𝑁 is odd. For example, if N=6 the indices are 0,1,2,-3,-2,-1, whereas if N=7
they are 0,1,2,3,-3,-2,-1.

Note: The index sets are the same in the two modeord choices; their ordering differs only by a cyclic shift. The
FFT ordering cyclically shifts the CMCL indices floor(𝑁/2) to the left (often called an “fftshift”).

chkbnds: [DEPRECATED] has no effect.

7.2.2 Diagnostic options

debug: Controls the amount of overall debug/timing output to stdout.

• debug=0 : silent

• debug=1 : print some information

• debug=2 : prints more information

spread_debug: Controls the amount of debug/timing output from the spreader/interpolator.

• spread_debug=0 : silent

– spread_debug=1 : prints some timing information

– spread_debug=2 : prints lots. This can print thousands of lines since it includes one line per subproblem.

showwarn: Whether to print warnings (these go to stderr).

• showwarn=0 : suppresses such warnings

• showwarn=1 : prints warnings

7.2.3 Algorithm performance options

nthreads: (Ignored in single-threaded library builds.) If positive, sets the number of threads to use throughout (multi-
threaded build of) library, or if 0 uses the maximum number of threads available according to OpenMP. In the positive
case, no cap is placed on this number. This number of threads is passed to bin-sorting (which may choose to use less
threads), but is adhered to in FFTW and spreading/interpolation steps. This number of threads (or 1 for single-threaded
builds) also controls the batch size for vectorized transforms (ie ntr>1 here). For medium-to-large transforms, 0 is
usually recommended. However, for (repeated) small transforms it can be advantageous to use a small number, even
as small as 1.
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fftw: FFTW planner flags. This number is simply passed to FFTW’s planner; the flags are documented here. A
good first choice is FFTW_ESTIMATE; however if you will be making multiple calls, consider FFTW_MEASURE, which
could spend many seconds planning, but will give a faster run-time when called again from the same process. These
macros are bit-wise flags defined in /usr/include/fftw3.h on a linux system; they currently have the values
FFTW_ESTIMATE=64 and FFTW_MEASURE=0. Note that FFTW plans are saved (by FFTW’s library) automatically
from call to call in the same executable (incidentally, also in the same MATLAB/octave or python session); there is
a small overhead for lookup of such plans, which with many repeated small problems can motivate use of the guru
interface.

spread_sort: Sorting mode within the spreader/interpolator.

• spread_sort=0 : never sorts

• spread_sort=1 : always sorts

• spread_sort=2 : uses a heuristic to decide whether to sort or not.

The heuristic bakes in empirical findings such as: generally it is not worth sorting in 1D type 2 transforms, or when the
number of nonuniform points is small. Do not change this from its default unless you obsever.

spread_kerevalmeth: Kernel evaluation method in spreader/interpolator. This should not be changed from its default
value, unless you are an expert wanting to compare against outdated

• spread_kerevalmeth=0 : direct evaluation of sqrt(exp(beta(1-x*x))) in the ES kernel. This is outdated,
and it’s only possible use could be in exploring upsampling factors 𝜎 different from standard (see below).

• spread_kerevalmeth=1 : use Horner’s rule applied to piecewise polynomials with precomputed coefficients.
This is faster, less brittle to compiler/glibc/CPU variations, and is the recommended approach. It only works for
the standard upsampling factors listed below.

spread_kerpad: whether to pad the number of direct kernel evaluations per dimension and per nonuniform point to a
multiple of four; this can help SIMD vectorization. It only applies to the (outdated) spread_kerevalmeth=0 choice.
There is thus little reason for the nonexpert to mess with this option.

• spread_kerpad=0 : do not pad

• spread_kerpad=1 : pad to next multiple of four

upsampfac: This is the internal real factor by which the FFT (fine grid) is chosen larger than the number of requested
modes in each dimension, for type 1 and 2 transforms. We have built efficient kernels for only two settings, as follows.
Otherwise, setting it to zero chooses a good heuristic:

• upsampfac=0.0 : use heuristics to choose upsampfac as one of the below values, and use this value internally.
The value chosen is visible in the text output via setting debug>=2. This setting is recommended for basic users;
however, if you seek more performance it is quick to try the other of the below.

• upsampfac=2.0 : standard setting of upsampling. This is necessary if you need to exceed 9 digits of accuracy.

• upsampfac=1.25 : low-upsampling option, with lower RAM, smaller FFTs, but wider spreading kernel. The
latter can be much faster than the standard when the number of nonuniform points is similar or smaller to the
number of modes, and/or if low accuracy is required. It is especially much (2 to 3 times) faster for type 3
transforms. However, the kernel widths 𝑤 are about 50% larger in each dimension, which can lead to slower
spreading (it can also be faster due to the smaller size of the fine grid). Because the kernel width is limited to
16, currently, thus only 9-digit accuracy can currently be reached when using upsampfac=1.25.

spread_thread: in the case of multiple transforms per call (ntr>1, or the “many” interfaces), controls how multi-
threading is used to spread/interpolate each batch of data.

• spread_thread=0 : makes an automatic choice between the below. Recommended.

• spread_thread=1 : acts on each vector in the batch in sequence, using multithreaded spread/interpolate on that
vector. It can be slightly better than 2 for large problems.
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• spread_thread=2 : acts on all vectors in a batch (of size chosen typically to be the number of threads) simul-
taneously, assigning each a thread which performs a single-threaded spread/interpolate. It is much better than 1
for all but large problems. (Historical note: this was used by Melody Shih for the original “2dmany” interface in
2018.)

Note: Historical note: A former option 3 has been removed. This was like 2 except allowing nested OMP
parallelism, so multi-threaded spread-interpolate was used for each of the vectors in a batch in parallel. This was
used by Andrea Malleo in 2019. We have not yet found a case where this beats both 1 and 2, hence removed it
due to complications with changing the OMP nesting state in both old and new OMP versions.

maxbatchsize: in the case of multiple transforms per call (ntr>1, or the “many” interfaces), set the largest batch size
of data vectors. Here 0makes an automatic choice. If you are unhappy with this, then for small problems it should equal
the number of threads, while for large problems it appears that 1 often better (since otherwise too much simultaneous
RAM movement occurs). Some further work is needed to optimize this parameter.

spread_nthr_atomic: if non-negative: for numbers of threads up to this value, an OMP critical block for
add_wrapped_subgrid is used in spreading (type 1 transforms). Above this value, instead OMP atomic writes are
used, which scale better for large thread numbers. If negative, the heuristic default in the spreader is used, set in
src/spreadinterp.cpp:setup_spreader().

spread_max_sp_size: if positive, overrides the maximum subproblem (chunking) size for multithreaded
spreading (type 1 transforms). Otherwise the default in the spreader is used, set in src/spreadinterp.
cpp:setup_spreader(), which we believe is a decent heuristic for Intel i7 and xeon machines.
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CHAPTER

EIGHT

ERROR (STATUS) CODES

In all FINUFFT interfaces, the returned value ier is a status indicator. It is 0 if successful, otherwise the error code
has the following meanings (see codes in include/finufft_errors.h):

1 requested tolerance epsilon too small to achieve (warning only)
2 stopped due to needing internal array size >MAX_NF (defined in defs.h)
3 spreader: fine grid too small compared to spread (kernel) width
4 spreader: [DEPRECATED]
5 spreader: array allocation error
6 spreader: illegal direction (should be 1 or 2)
7 upsampfac too small (should be >1.0)
8 upsampfac not a value with known Horner poly eval rule (currently 2.0 or 1.25 only)
9 ntrans not valid in "many" (vectorized) or guru interface (should be >= 1)
10 transform type invalid
11 general internal allocation failure
12 dimension invalid
13 spread_thread option invalid
14 invalid mode array (more than ~2^31 modes, dimension with 0 modes, etc)
15 CUDA failure (failure to call any cuda function/kernel, malloc/memset, etc))
16 attempt to destroy an uninitialized plan
17 invalid spread/interp method for dim (attempt to blockgather in 1D, e.g.)
18 size of bins for subprob/blockgather invalid
19 GPU shmem too small for subprob/blockgather parameters
20 invalid number of nonuniform points: nj or nk negative, or too big (see defs.h)

When ier=1 (warning only) the transform(s) is/are still completed, at the smallest epsilon achievable, so, with that
caveat, the answer should still be usable.

For any other nonzero values of ier the transform may not have been performed and the output should not be trusted.
However, we hope that the value of ier will help to narrow down the problem.

FINUFFT sometimes also sends error text to stderr if it detects faulty input parameters. Please check your terminal
output.

If you are getting error codes, please reread the documentation for your language, then see our troubleshooting advice.
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8.1 Large internal arrays

In case your input parameters demand the allocation of very large arrays, an internal check is done to see if their
size exceeds a rather generous internal limit, set in defs.h as MAX_NF. The current value in the source code is 1e12,
which corresponds to about 10TB for double precision. Allocations beyond this cause a graceful exit with error code
2 as above. Such a large allocation can be due to enormous N (in types 1 or 2), or M, but also large values of the
space-bandwidth product (loosely, range of x𝑗 points times range of k𝑗 points) for type 3 transforms; see Remark 5 in
reference FIN . Note that mallocs smaller than this, but which still exceed available RAM, may cause segfaults as usual.
For simplicity of code, we do not do error checking on every malloc or STL vector creation in the code, and neither is
this recommended in modern style guides. If you have a large-RAM machine and want to exceed the above hard-coded
limit, you will need to edit defs.h and recompile.

Similar sanity checks are done on the numbers of nonuniform points, and it is (barely) conceivable that you could want
to increase MAX_NU_PTS beyond its current value of 1e14 in defs.h, and recompile.

8.1. Large internal arrays 42



CHAPTER

NINE

TROUBLESHOOTING

If you are having issues (segfaults, slowness, “wrong” answers, etc), there is a high probability it is something we
already know about, so please first read all of the advice below in the section relevant to your problem: math, speed, or
crashing. Also look for similar GitHub Issues or Discussions. If that fails, post an Issue. The lead developer may also
be contacted at abarnett@flatironinstitute.org

9.1 Mathematical “issues” and error size

• The type 1 and type 2 transforms are adjoints but not inverses of each other (unlike in the plain FFT case,
where, up to a constant factor 𝑁 , the adjoint is the inverse). Thus you cannot “undo” one transform by applying
the other! (Unless the nonuniform points are precisely regularly spaced, and then you should instead be using
the plain FFT). Therefore, if you are not getting the expected answers, please check that you have not made this
assumption. In the tutorials we have an example showing how to invert the NUFFT; also see NFFT3 inverse
transforms.

• If you request a tolerance tol that FINUFFT knows it cannot achieve, it will return the warning code ier=1 after
performing transforms as accurately as it can. Conversely, the status ier=0 does not imply that the requested
accuracy was achieved, merely that parameters were chosen to attempt this estimated accuracy. As our SISC
paper shows, for typical situations, relative ℓ2 errors match the requested tolerances over a wide range, barring
the caveats below. Users should always check convergence (by, for instance, varying tol and measuring any
changes in their results); this is of course generally true in scientific computing.

• When requested tolerance tol is around 10−14 or less in double-precision, or 10−6 or less in single-precision,
it will most likely be impossible for FINUFFT (or any other NUFFT library) to achieve this, due to inevitable
round-off error. The next point goes into this in more detail.

• The condition number of the problem may be the factor limiting the accuracy in your application. In this case,
no NUFFT algorithm nor code could, even in principle, compute it more accurately given the working precision
of the input data! This applies particularly to 1D transforms with large 𝑁 (number of modes), say 𝑁 ≥ 105, and
especially in single precision. Recall that machine error 𝜖𝑚𝑎𝑐ℎ is around 6e-8 in single and 1e-16 in double
precision. The rule of thumb here is that one cannot demand that NUFFT relative output errors be smaller than
𝑁𝑚𝑎𝑥𝜖𝑚𝑎𝑐ℎ, where 𝑁𝑚𝑎𝑥 is the largest of the mode sizes 𝑁1, . . . , 𝑁𝑑 in the 𝑑-dimensional case. This applies
in the ℓ2 or maximum norms. No such dependence on 𝑀 occurs. In type 3 transforms, the 𝑁𝑚𝑎𝑥 should be
replaced by the space-bandwidth product (maximum 𝑥 spread times maximum 𝑘 spread) in any dimension.

Let us explain why, recalling the definition (1.1). The simple reason is that (𝑑/𝑑𝑥𝑗)𝑒
𝑖𝑘𝑥𝑗 = 𝑖𝑘𝑒𝑖𝑘𝑥𝑗 , so that the

Jacobian derivative of the outputs of a type 1 or type 2 NUFFT, with respect to variation of the input locations
𝑥𝑗 , grows like the mode index 𝑘. The magnitude of the latter can be as large as 𝑁/2, i.e., 𝑂(𝑁), or 𝑂(𝑁𝑚𝑎𝑥)
in the multi-dimensional case. Since the inputs 𝑥𝑗 inevitably have a rounding error of 𝜖𝑚𝑎𝑐ℎ, this gets amplified
by the above factor to give a lower bound on the error of even the best (most stable) algorithm for the NUFFT.

In contrast the DFT (e.g., as computed by the FFT) has no growth in condition number vs 𝑁 (transform size),
because it is (up to scaling) an isometry. The crucial difference for the NUFFT is the presence of the new input
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type (nonuniform point locations), to which it can be highly sensitive.

For background on condition number of a problem, please read Ch. 12-15 of Numerical Linear Algebra by
Trefethen and Bau (SIAM, 1997).

NUFFT error is analysed and measured in Section 4.2 of our SISC paper, although in that work we omitted
attributing the round-off error to the condition number of the problem.

• Finally, re error: while the tolerance tol is usually a good upper bound for observed accuracy (barring the
𝜖𝑚𝑎𝑐ℎ𝑁𝑚𝑎𝑥 error above), strangely, in single-precision requesting tolerance of 10−7 or 10−6 can give slightly
worse accuracy than 10−5 or 10−4. We are looking into why. It is usually best to request at least 2–3 digits less
accurate than the respective machine precision, for either single or double precision. Ie, do not set tol below
10−5 in single or 10−13 in double.

9.2 Speed issues and advice

9.2.1 CPU library speed

If FINUFFT is slow (eg, less than 106 to 107 nonuniform points per second, depending on application), here is some
advice:

• Try printing debug output to see step-by-step timings. Do this by setting opts.debug to 1 or 2 then looking at
the timing information in stdout.

• Check that our test codes give similar speeds to what you observe, for a similar problem size. For example, if
your application uses a 2D type 1 transform from a million nonuniform points to 500-by-500 modes, at 5-digit
accuracy, using 8 threads, then build the tests and run:

OMP_NUMTHREADS=8 test/finufft2d_test 500 500 1e6 1e-5

which will give something like (on a laptop):

test 2d type 1:
1000000 NU pts to (500,500) modes in 0.0403 s 2.48e+07 NU pts/s
one mode: rel err in F[185,130] is 4.38e-07

test 2d type 2:
(500,500) modes to 1000000 NU pts in 0.0274 s 3.65e+07 NU pts/s
one targ: rel err in c[500000] is 6.1e-07

test 2d type 3:
1000000 NU to 250000 NU in 0.0626 s 2e+07 tot NU pts/s
one targ: rel err in F[125000] is 2.76e-06

Extract the relevant transform type (all three types are included), and compare its timing and throughput to your
own. Usually the fact that these tests use random NU point distributions does not affect the speed that much
compared to typical applications. If you instead use the vectorized (“many”) interface for a stack of, say, 50 such
transforms, use:

OMP_NUMTHREADS=8 test/finufft2d_test 500 500 1e6 1e-5

which compares the stack of transforms to the same transforms performed individually. For single precision
tests, append f to the executable name in both of the above examples. The command line options for each tester
can be seen by executing without any options.

• Try reducing the number of threads, either those available via OpenMP, or via opts.nthreads, perhaps down
to 1 thread, to make sure you are not having collisions between threads, or slowdown due to thread overheads.
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Hyperthreading (more threads than physical cores) rarely helps much. Thread collisions are possible if large
problems are run with a large number of (say more than 64) threads. Another case causing slowness is very
many repetitions of small problems; see test/manysmallprobs which exceeds 107 points/sec with one thread
via the guru interface, but can get ridiculously slower with many threads; see https://github.com/flatironinstitute/
finufft/issues/86

• Try setting a crude tolerance, eg tol=1e-3. How many digits do you actually need? This has a big effect in
higher dimensions, since the number of flops scales like (log 1/𝜖)𝑑, but not quite as big an effect as this scaling
would suggest, because in higher dimensions the flops/RAM ratio is higher.

• If type 3, make sure your choice of points does not have a massive space-bandwidth product (ie, product of
the volumes of the smallest 𝑑-dimension axes-aligned cuboids enclosing the nonuniform source and the target
points); see Remark 5 of our SISC paper. In short, if the spreads of x𝑗 and of s𝑘 are both big, you may be in
trouble. This can lead to enormous fine grids and hence slow FFTs. Set opts.debug=1 to examine the nf1,
etc, fine grid sizes being chosen, and the array allocation sizes. If they are huge, consider direct summation, as
discussed here.

• The timing of the first FFTW call is complicated, depending on the FFTW flags (plan mode) used. This is really
an FFTW planner flag usage question. Such issues are known, and modes benchmarked in other documentation,
eg for 2D in poppy. In short, using more expensive FFTW planning modes like FFTW_MEASURE can give better
performance for repeated FFTW calls, but be much more expensive in the first (planning) call. This is why we
choose FFTW_ESTIMATE as our default opts.fftw option.

• Check that you are not using too much RAM, hence swapping to hard disk or SSD. The multithreaded type-1
spreader can use up to another fine grid’s worth of storage in the form of subgrids. If RAM is too large, try overrid-
ing opts.spread_max_sp_size to a nonzero value smaller than the default value set in src/spreadinterp.
cpp:setup_spreader(), to reduce RAM. However, note that this may slow it down, because we have built in
a decent heuristic for the default.

• Make sure you did not override opts.spread_sort, which if set to zero does no sorting, which can give very
slow RAM access if the nonuniform points are ordered poorly (eg randomly) in larger 2D or 3D problems.

• Are you calling the simple interface a huge number of times for small problems, but these tasks have something
in common (number of modes, or locations of nonuniform points)? If so, try the vectorized or guru interfaces,
which remove overheads in repeated FFTW plan look-up, and in bin-sorting. They can be 10-100x faster.

9.2.2 GPU library speed

If cuFINUFFT is slow (eg, less than 108 nonuniform points per second), here is some advice:

• Run our test codes with a similar problem size on your hardware. Build the tests, then, for example (matching
the vectorized CPU example above):

test/cuda/cufinufft2dmany_test 1 1 500 500 50 0 1000000 1e-5 1e-4 f

which gives (on my A6000) the output:

#modes = 250000, #inputs = 50, #NUpts = 1000000
[time ] dummy warmup call to CUFFT 0.00184 s
[time ] cufinufft plan: 0.000624 s
[time ] cufinufft setNUpts: 0.000431 s
[time ] cufinufft exec: 0.0839 s
[time ] cufinufft destroy: 0.00194 s
[gpu ] 49th data one mode: rel err in F[185,130] is 2.61e-05
[totaltime] 8.69e+04 us, speed 5.76e+08 NUpts/s

(exec-only thoughput: 5.96e+08 NU pts/s)
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Check if your time is dominated by the plan stage, and if so, try to reuse your plan (often one has repeated
transforms with sizes or points in common). Sometimes the CUFFT warm-up call can take as long as 0.2 seconds;
make sure you do such a call (or a dummy transform) before your timed usage occurs. See https://github.com/
flatironinstitute/finufft/issues/385 for an example of this discovery process. The command line options for each
tester can be seen by executing without any options. Note that 1e6 for the GPU testers is not interpreted as 106,
unlike in the CPU testers.

• Try the different method types. Start with method=1. For instance, for type 1 transforms, method 2 (SM in the
paper) is supposed to be faster than method 1 (GM-sort in the paper), but on the above test it is only 2% faster.
In the test call, the 1st argument sets the method type and the next argument the transform type.

• There is not currently a debug option for cufinufft, so the above timing of a test problem on your hardware is
a good option. You could place timers around the various cufinufft calls in your own code, just as in our test
codes.

9.3 Crash (segfault) issues and advice

• Are you using int64 (integer*8) types for sizes M, N, etc? (If you have warnings switched off, you may not
notice this until execution.)

• Are you passing in pointers to the wrong size of object, eg, single vs double precision? The library includes both
precisions, so make sure you are calling the correct one (commands begin finufft for double, finufftf for
single).

• If you use C++/C/Fortran and changed the options struct values, did you forget to call finufft_default_opts
first?

• Maybe you have switched off nonuniform point bounds checking (opts.chkbnds=0) for a little extra speed?
Try switching it on again to catch illegal coordinates.

• Thread-safety: are you calling FINUFFT from inside a multithreaded block of code without setting opts.
nthreads=1? If gdb indicates crashes during FFTW calls, this is another sign.

• To isolate where a crash is occurring, set opts.debug to 1 or 2, and check the text output of the various stages.
With a debug setting of 2 or above, when ntrans>1 a large amount of text can be generated.

• To diagnose problems with the spread/interpolation stage, similarly setting opts.spread_debug to 1 or 2 will
print even more output. Here the setting 2 generates a large amount of output even for a single transform.

• For the GPU code, did you run out of GPU memory? Keep track of this with nvidia-smi.

9.4 Other known issues with library or interfaces

The master list is the github issues for the project page, https://github.com/flatironinstitute/finufft/issues.

A secondary and more speculative list is in the TODO text file.

Please look through those issue topics, since sometimes workarounds are discussed before the problem is fixed in a
release.
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9.5 Bug reports

If you think you have found a new bug, and have read the above, please file a new issue on the github project page,
https://github.com/flatironinstitute/finufft/issues. Include a minimal code which reproduces the bug, along with details
about your machine, operating system, compiler, version of FINUFFT, and output with opts.debug=2. If you have a
known bug and have ideas, please add to the comments for that issue.

You may also contact Alex Barnett (abarnett at-sign flatironinstitute.org) with FINUFFT in the subject line.
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CHAPTER

TEN

TUTORIALS AND APPLICATION DEMOS

The following are instructive demos of using FINUFFT for a variety of spectrally-related tasks arising in scientific
computing and signal/image processing. We will slowly grow the list (contact us to add one). For conciseness of code,
and ease of writing, they are currently in MATLAB (they should work on versions at least back to R2017a).

10.1 Fast evaluation of Fourier series at arbitrary points

This is a simple demo of using type 2 NUFFTs to evaluate a given 1D and then 2D Fourier series rapidly (close to
optimal scaling) at arbitrary points. For conciseness of code, we use the MATLAB interface. The series we use are
vaguely boring random ones relating to Gaussian random fields—please insert Fourier series coefficient vectors you
care about.

10.1.1 1D Fourier series

Let our periodic domain be [0, 𝐿), so that we get to see how to rescale from the fixed period of 2𝜋 in FINUFFT. We
set up a random Fourier series with Gaussian decaying coefficients (this in fact is a sample from a stationary Gaussian
random field, or Gaussian process with covariance kernel itself a periodized Gaussian):

L = 10; % period
kmax = 500; % bandlimit
k = -kmax:kmax-1; % freq indices (negative up through positive mode ordering)
N = 2*kmax; % # modes
rng(0); % make some convenient Fourier coefficients...
fk = randn(N,1)+1i*randn(N,1); % iid random complex data, column vec
k0 = 100; % a freq scale parameter
fk = fk .* exp(-(k/k0).^2).'; % scale the amplitudes, kills high freqs

Now we use a 1D type 2 to evaluate this series at a large number of points very quickly:

M = 1e6; x = L*rand(1,M); % make random target points in [0,L)
tol = 1e-12;
x_scaled = x * (2*pi/L); % don't forget to scale to 2pi-periodic!
tic; c = finufft1d2(x_scaled,+1,tol,fk); toc % evaluate Fourier series at x

Elapsed time is 0.026038 seconds.

Compare this to a naive calculation (which serves to remind us exactly what sum FINUFFT approximates):

tic; cn = 0*c; for m=k, cn = cn + fk(m+N/2+1)*exp(1i*m*x_scaled.'); end, toc
norm(c-cn,inf)
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Elapsed time is 11.679265 seconds.
ans =

1.76508266507874e-11

Thus, with only 103 modes, FINUFFT is 500 times faster than naive multithreaded summation. (Naive summation
with reversed loop order is even worse, taking 29 seconds.) We plot 1% of the resulting values and get the smooth but
randomly-sampled graph below:

Mp = 1e4; % how many pts to plot
jplot = 1:Mp; % indices to plot
plot(x(jplot),real(c(jplot)),'b.'); axis tight; xlabel('x'); ylabel('Re f(x)');

See the full code tutorial/serieseval1d.m which also shows how to evaluate the same series on a uniform grid via the
plain FFT.

10.1.2 2D Fourier series

Since we already know how to rescale to periodicity 𝐿, let’s revert to the natural period and work in the square [0, 2𝜋)2.
We create a random 2D Fourier series, which happens to be for a Gaussian random field with (doubly periodized)
isotropic Matérn kernel of arbitrary power:

kmax = 500; % bandlimit per dim
k = -kmax:kmax-1; % freq indices in each dim
N1 = 2*kmax; N2 = N1; % # modes in each dim
[k1 k2] = ndgrid(k,k); % grid of freq indices
rng(0); fk = randn(N1,N2)+1i*randn(N1,N2); % iid random complex modes
k0 = 30; % freq scale parameter
alpha = 3.7; % power; alpha>2 to converge in L^2
fk = fk .* ((k1.^2+k2.^2)/k0^2 + 1).^(-alpha/2); % sqrt of spectral density

We then simply call a 2D type 2 to evaluate this double series at whatever target points you like:

M = 1e6; x = 2*pi*rand(1,M); y = 2*pi*rand(1,M); % random targets in square
tol = 1e-9;
tic; c = finufft2d2(x,y,+1,tol,fk); toc % evaluate Fourier series at (x,y)'s

Elapsed time is 0.092743 seconds.

1 million modes to 1 million points in 92 milliseconds on a laptop is decent. We check the math (using a relative error
measure) at just one (generic) point:

10.1. Fast evaluation of Fourier series at arbitrary points 49

https://github.com/flatironinstitute/finufft/blob/master/tutorial/serieseval1d.m


FINUFFT Documentation, Release 2.2.0

j = 1; % do math check on 1st target...
c1 = sum(sum(fk.*exp(1i*(k1*x(j)+k2*y(j)))));
abs(c1-c(j)) / norm(c,inf)

ans =
2.30520830208365e-10

Finally we use a colored scatter plot to show the first 10% of the points in the square, and see samples of the underlying
random field (reminiscent of WMAP microwave background data):

jplot = 1:1e5; % indices to plot
scatter(x(jplot),y(jplot),1.0,real(c(jplot)),'filled'); axis tight equal
xlabel('x'); ylabel('y'); colorbar; title('Re f(x,y)');

See the full code tutorial/serieseval2d.m.

10.2 Efficient evaluation of (continuous) Fourier transforms

Say you want to evaluate the continous (as opposed to discrete) Fourier transform (FT) of a given function, but you do
not know the analytic formula for the FT. You need a numerical method. It is common to assume that the FFT is the
right tool to do this, but this rarely so . . . unless you are content with very poor accuracy! The reason is that the FFT
applies only to equispaced data samples, which enforces the use of 𝑁 equispaced nodes in any quadrature scheme for
the Fourier integral. Thus, unless you apply endpoint weight corrections (which are available only in 1D, and stable
only up to around 8th order; see references at the bottom of this page), you are generally stuck with 1st or 2nd order
(the standard trapezoid rule) convergence with respect to 𝑁 . And there are many situations where a FFT-based scheme
would be even worse: this includes nonsmooth or singular functions (which demand custom quadrature rules even in
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1D), smooth functions with varying scales (demanding adaptive quadrature for efficiency), and possibly nonsmooth
functions on complicated domains in higher dimensions.

Here we show that the NUFFT is often the right tool for efficient and accurate Fourier tranform evaluation, since it
allows the user to apply their favorite quadrature scheme as appropriate for whatever nasty function they desire. As
long as 𝑁 is bigger than around 10, the NUFFT becomes more efficient than direct evaluation of exponential sums; as
we know, most quadrature rules, especially in 2D or 3D, involve many more points than this.

10.2.1 1D FTs evaluated at arbitrary frequencies

Given a function 𝑓 , we’ll need a single quadrature scheme with nodes 𝑥𝑗 and weights 𝑤𝑗 , 𝑗 = 1, . . . , 𝑁 , that allows
accurate approximation of its Fourier integral

𝑓(𝑘) =

∫︁
𝑓(𝑥)𝑒𝑖𝑘𝑥𝑑𝑥 ≈

𝑁∑︁
𝑗=1

𝑓(𝑥𝑗)𝑒
𝑖𝑘𝑥𝑗𝑤𝑗 (10.1)

for all “target” frequencies 𝑘 in some domain of interest. You can apply the below to any 𝑓 for which you have such a
rule.

For simplicity let’s take 𝑓 a smooth (somewhat oscillatory) function on (𝑎, 𝑏), choose a million random frequency
targets out to some kmax, then pick Gauss-Legendre quadrature for (𝑎, 𝑏):

a=0; b=1; % interval
f = @(x) cos(50*x.^2); % our smooth function defined on (a,b), zero elsewhere
M = 1e6; % # targets we want to compute the FT at
kmax = 500;
k = kmax * (2*rand(1,M)-1); % desired target frequencies
N = 200; % how many quadrature nodes
[xj,wj] = lgwt(N,a,b); % quadrature rule for smooth funcs on (a,b)

Below is 𝑓 with the 200-node rule overlayed on it. You’ll notice that the rule seems to be excessively fine (over-resolving
𝑓(𝑥)), but that’s because it actually needs to be able to resolve 𝑓(𝑥)𝑒𝑖𝑘𝑥 for all of our 𝑘 values:

Notice (10.1) is simply a type 3 NUFFT with strengths 𝑐𝑗 = 𝑓(𝑥𝑗)𝑤𝑗 , so we evaluate it by calling FINUFFT (this takes
0.1 sec) then plot the resulting FT at its target 𝑘 points:

tol = 1e-10;
fhat = finufft1d3(xj, f(xj).*wj, +1, tol, k);
plot(k, [real(fhat),imag(fhat)], '.');
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This looks like a continuous curve, but is actually (half a) million discrete points. Notice that because 𝑓 was discon-
tinuous on R, 𝑓(𝑘) decays slowly like |𝑘|−1. How do we know to trust the answer? A convergence study in N shows
that 200 nodes was indeed enough to reduce the quadrature error to below the 10−10 NUFFT tolerance:

Ns = 100:10:220; % N values to check convergence
for i=1:numel(Ns), N=Ns(i);
[xj,wj] = lgwt(N,a,b); % N-node quadrature scheme for smooth funcs on (a,b)
fhats{i} = finufft1d3(xj, f(xj).*wj, +1, tol, k);

end
f0 = norm(fhats{end},inf); % compute rel sup norm of fhat vs highest-N case
for i=1:numel(Ns)-1, errsup(i) = norm(fhats{i}-fhats{end},inf)/f0; end
semilogy(Ns(1:end-1),errsup,'+-');

Remember: always do a convergence study! We see rapid spectral convergence as the quadrature rule resolves the
oscillations in 𝑒𝑖𝑘𝑥 at |𝑘| = 𝑘max. See tutorial/contft1d.m for the full code.

Note: If you cared about only a few very high 𝑘 values, numerical steepest descent applied at the endpoints 𝑎 and 𝑏
would eventually beat the above.

10.2.2 Faster FTs when frequencies lie on a grid

When the target frequencies lie on a uniform grid, the above type 3 NUFFT can be replaced by a type 1, which is faster,
by a simple rescaling. Say that we replace the random targets in the above example by this uniform grid with spacing
dk:

dk = 2*kmax/M; % spacing of target k grid
k = dk * (-M/2:(M/2-1)); % a particular uniform M-grid of this spacing
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Reusing our quadrature xj, wj from above, we wish to stretch the frequency grid from spacing dk to have unit spacing,
which is the integer (Fourier mode) grid implied by (1.1), the definition of the type 1. This is equivalent to squeezing
the inputs 𝑥𝑗 by the same factor, which we do as we send them in:

cj = f(xj).*wj; % strengths (same as before)
fhat = finufft1d1(dk*xj, cj, +1, tol, M); % type 1, requesting M modes

This took only 0.05 sec, around twice as fast as before. We must check it is giving what we want:

fhat3 = finufft1d3(xj, cj, +1, tol, k); % old type 3 method
norm(fhat-fhat3,inf)

which reports around 3e-11, so it worked. Note the specific offset of the k grid matched that of the Fourier mode
indices; if you want a different offset, you will have to shift (by it to this specific offset, then post-multiply fhat with a
corresponding phase.

10.2.3 1D FTs of singular functions

The above 𝑓 was merely discontinuous. But you can now go further and easily replace (𝑥𝑗 , 𝑤𝑗) by a rule that is accurate
for a function with known singularities. Eg, say 𝑓(𝑥) = 𝑥−1/2𝑔(𝑥) where 𝑔 is smooth on [0, 1], then the change of
variable 𝑥 = 𝑦2 means that

∫︀ 1

0
𝑓(𝑥)𝑑𝑥 =

∫︀ 1

0
2𝑦𝑓(𝑦)𝑑𝑦, the latter having a smooth integrand to which plain Gauss-

Legendre can be applied, giving a new rule 𝑥′
𝑗 = 𝑥2

𝑗 and 𝑤′
𝑗 = 2𝑥𝑗𝑤𝑗 . Notice how this bypassed the pain of building

a (𝛼 = 0, 𝛽 = −1/2) Gauss-Jacobi quadrature!

Let’s try out this new rule on a suitably singular function, keeping other aspects the same as the above type 1 method:

f = @(x) cos(50*x.^2)./sqrt(x); % singular function defined on (0,1), zero elsewhere
Ns = 180:20:240; % N values to check convergence
for i=1:numel(Ns), N=Ns(i);
[xj,wj] = lgwt(N,a,b); % N-node scheme for smooth funcs on (0,1)
wj = 2*xj.*wj; xj = xj.*xj; % convert to rule for -1/2 power singularity @ 0
fhats{i} = finufft1d1(dk*xj, f(xj).*wj, +1, tol, M); % type 1 as above

end
f0 = norm(fhats{end},inf); % compute rel sup norm of fhat vs highest-N case
for i=1:numel(Ns)-1, errsup(i) = norm(fhats{i}-fhats{end},inf)/f0; end
disp([Ns(1:3); errsup(1:3)]')
fhat = fhats{end}; plot(k, [real(fhats),imag(fhat)], '.');

This exhibits rapid convergence kinking in at a slightly higher 𝑁 , while 𝑓(𝑘) now has even slower decay (which one
can check is |𝑘|−1/2):

180 0.208975054515039
200 3.04233050928417e-05
220 1.9202016281569e-10
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Neither 𝑓 nor 𝑓 is in 𝐿2(R). Other rules (adaptive, etc) can be designed to efficiently handle various other features of
even nastier 𝑓 choices.

10.2.4 2D FTs

In higher dimensions, the idea is the same: set up a good quadrature rule for your function 𝑓 , then apply it to the Fourier
integral

𝑓(k) =

∫︁
𝑓(x)𝑒𝑖k·x𝑑x ≈

𝑁∑︁
𝑗=1

𝑓(x𝑗)𝑒
𝑖k·x𝑗𝑤𝑗 (10.2)

for all “target” frequencies k in your domain of interest. We demo the case of 𝑓 = 𝜒Ω, the characteristic function of
a bounde domain Ω ⊂ R2, that is, 𝑓(x) = 1 for 𝑥 ∈ Ω, and 0 otherwise. For simplicity, let’s take Ω with boundary
described in polar coordinates by 𝑔(𝜃) = 1 + 0.3 cos 5𝜃. This enables a simple two-level quadrature scheme, namely
an outer 𝑛-node periodic trapezoid rule in 𝜃, whose integrand is an inner 𝑚-node Gauss-Legendre rule applied to the
radial integral. Since 𝑔 is smooth, this will have spectral convergence in 𝑛 and 𝑚. Here is a fresh code to make this
quadrature over Ω:

g = @(t) 1 + 0.3*cos(3*t); % boundary shape
n = 280; % # theta nodes
t = 2*pi*(1:n)/n; wt = (2*pi/n); % theta nodes, const weights
bx = cos(t).*g(t); by = sin(t).*g(t); % boundary points
m = 70; % # r nodes
[xr,wr] = lgwt(m,0,1); % rule for (0,1)
xj = nan(n*m,1); yj = xj; wj = xj;
for i=1:n % loop over angles
r = g(t(i)); jj = (1:m) + (i-1)*m; % this radius; index list
xj(jj) = cos(t(i))*r*xr; yj(jj) = sin(t(i))*r*xr; % line of nodes
wj(jj) = wt*r^2*xr.*wr; % theta weight times rule for r.dr on (0,r)

end
plot([bx bx(1)],[by by(1)],'-'); hold on; plot(xj,yj,'.');
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Note that we reduced the numbers of nodes in the plot for clarity. Say we want 𝑓 on a 2D square grid of frequency
targets. We apply the 2D version of the above type 1 scheme. The function is identically 1 in the domain, so the weights
simply become the source strengths. We also image the result on a log scale:

kmax = 100; % half the side length in k
M1 = 1e3; % target grid will be M1-by-M1
dk = 2*kmax/M1;
k1 = dk * (-M1/2:(M1/2-1)); % same 1D freq grid as before
tol = 1e-9;
fhat = finufft2d1(dk*xj, dk*yj, wj, +1, tol, M1, M1); % M1^2 output nodes
imagesc(k1,k1,log10(abs(fhat))'); axis xy equal tight; colorbar
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Thus we have computed the 2D FT of a discontinous function on a million-point grid to around 10-digit accuracy in
0.05 sec (the FINUFFT transform time). Note that, as with 1D discontinuous functions, the decay with 𝑘 := |k| is slow
(it is like 1/𝑘). See the full code tutorial/contft2d.m also for the study that shows that, for the above kmax, convergence
to the tolerance has occurred by n=280 and m=70, needing 𝑁 = 19600 nodes. A more efficient set would vary m with
𝜃.

Note: An application of the above to optics is that Ω is a planar scatterer (or its complement, an aperture, via Babinet’s
principle) upon which a monochromatic plane wave is incident. The wavelength is small compared to the size of Ω, so
that a scalar Kirchhoff diffraction model is a good one. If a downstream planar detector is very distant (the Fraunhofer
diffraction limit), and the angles of scattering are small, then |𝑓 |2 is a good model for the detected scattered intensity.

10.2.5 Further reading

Higher-order end corrections to the trapezoid rule in 1D settings can allow all but 𝒪(1) of the nodes to be on a regular
grid. They also can be useful for known singularities (log, 1/sqrt, etc):

• Kapur, S., Rokhlin, V. High-order corrected trapezoidal quadrature rules for singular functions. SIAM J. Numer.
Anal. 34(4), 1331–1356 (1997)

• Alpert, B. K. Hybrid Gauss-Trapezoidal Quadrature Rules, SIAM J. Sci. Comput. 20(5), 1551–1584 (1999)

Kirchhoff approximation and Fraunhofer diffraction in optics:

• M. Born and E. Wolf, Principles of Optics, 6th edition. Section 8.3.
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10.3 Periodic Poisson solve on non-Cartesian quadrature grid

It is standard to use the FFT as a fast solver for the Poisson equation on a periodic domain, say [0, 2𝜋)𝑑. Namely, given
𝑓 , find 𝑢 satisfying

−∆𝑢 = 𝑓 , where
∫︁
[0,2𝜋)𝑑

𝑓 𝑑𝑥 = 0 ,

which has a unique solution up to constants. When 𝑓 and 𝑢 live on a regular Cartesian mesh, three steps are needed.
The first takes an FFT to approximate the Fourier series coefficient array of 𝑓 , the second divides by ‖𝑘‖2, and the third
uses another FFT to evaluate the Fourier series for 𝑢 back on the original grid. Here is a MATLAB demo in 𝑑 = 2
dimensions. Firstly we set up a smooth function, periodic up to machine precision:

w0 = 0.1; % width of bumps
src = @(x,y) exp(-0.5*((x-1).^2+(y-2).^2)/w0^2)-exp(-0.5*((x-3).^2+(y-5).^2)/w0^2);

Now we do the FFT solve, using a loop to check convergence with respect to n the number of grid points in each
dimension:

ns = 40:20:120; % convergence study of grid points per side
for i=1:numel(ns), n = ns(i);
x = 2*pi*(0:n-1)/n; % grid
[xx yy] = ndgrid(x,x); % ordering: x fast, y slow
f = src(xx,yy); % eval source on grid
fhat = ifft2(f); % step 1: Fourier coeffs by Euler-F projection
k = [0:n/2-1 -n/2:-1]; % Fourier mode grid
[kx ky] = ndgrid(k,k);
kfilter = 1./(kx.^2+ky.^2); % -(Laplacian)^{-1} in Fourier space
kfilter(1,1) = 0; % kill the zero mode (even if inconsistent)
kfilter(n/2+1,:) = 0; kfilter(:,n/2+1) = 0; % kill n/2 modes since non-symm
u = fft2(kfilter.*fhat); % steps 2 and 3
u = real(u);
fprintf('n=%d:\t\tu(0,0) = %.15e\n',n,u(1,1)) % check conv at a point

end

We observe spectral convergence to 14 digits:

n=40: u(0,0) = 1.551906153625019e-03
n=60: u(0,0) = 1.549852227637310e-03
n=80: u(0,0) = 1.549852190998224e-03
n=100: u(0,0) = 1.549852191075839e-03
n=120: u(0,0) = 1.549852191075828e-03

Here we plot the FFT solution:

figure; subplot(1,2,1); imagesc(x,x,f'); colorbar('southoutside');
axis xy equal tight; title('source term f'); xlabel('x'); ylabel('y');
subplot(1,2,2); imagesc(x,x,u'); colorbar('southoutside');
axis xy equal tight; title('FFT solution u'); xlabel('x'); ylabel('y');
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Now let’s say you wish to do a similar Poisson solve on a non-Cartesian grid covering the same domain. There are
two cases: a) the grid is unstructured and you do not know the weights of a quadrature scheme, or b) you do know
the weights of a quadrature scheme (which ususally implies that the grid is structured, such as arising from a different
coordinate system or an adaptive subdivision). By quadrature scheme we mean nodes 𝑥𝑗 ∈ R𝑑, 𝑗 = 1, . . . ,𝑀 , and
weights 𝑤𝑗 such that, for all smooth functions 𝑓 ,∫︁

[0,2𝜋)𝑑
𝑓(𝑥)𝑑𝑥 ≈

𝑀∑︁
𝑗=1

𝑓(𝑥𝑗)𝑤𝑗

holds to sufficient accuracy. We consider case b) only. For demo purposes, we use a simple smooth diffeomorphism
from [0, 2𝜋)2 to itself to define a distorted mesh (the associated quadrature weights will come from the determinant of
the Jacobian):

map = @(t,s) [t + 0.5*sin(t) + 0.2*sin(2*s); s + 0.3*sin(2*s) + 0.3*sin(s-t)];
mapJ = @(t,s) [1 + 0.5*cos(t), 0.4*cos(2*s); ...

-0.3*cos(s-t), 1+0.6*cos(2*s)+0.3*cos(s-t)]; % its 2x2 Jacobian

For convenience of checking the solution against the above one, we chose the map to take the origin to itself. To
visualize the grid, we plot 𝑓 on it, noting that it covers the domain when periodically extended:

t = 2*pi*(0:n-1)/n; % 1d unif grid
[tt ss] = ndgrid(t,t);
xxx = map(tt(:)',ss(:)');
xx = reshape(xxx(1,:),[n n]); yy = reshape(xxx(2,:),[n n]); % 2D NU pts
f = src(xx,yy);
figure; mesh(xx,yy,f); view(2); axis equal; axis([0 2*pi 0 2*pi]); title('f on mesh');
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To solve on this grid, replace step 1 above by evaluating the Euler-Fourier formula using the quadrature scheme, which
needs a type-1 NUFFT, and step 3 (evaluation on the nonuniform grid) by a type-2 NUFFT. Step 2 (the frequency filter)
remains the same. Here is the demo code:

tol = 1e-12; % NUFFT precision
ns = 80:40:240; % convergence study of grid points per side
for i=1:numel(ns), n = ns(i);
t = 2*pi*(0:n-1)/n; % 1d unif grid
[tt ss] = ndgrid(t,t);
xxx = map(tt(:)',ss(:)');
xx = reshape(xxx(1,:),[n n]); yy = reshape(xxx(2,:),[n n]); % 2d NU pts
J = mapJ(tt(:)',ss(:)');
detJ = J(1,1:n^2).*J(2,n^2+1:end) - J(2,1:n^2).*J(1,n^2+1:end);
ww = detJ / n^2; % 2d quadr weights, including 1/(2pi)^2 in E-F integr
f = src(xx,yy);
Nk = 0.5*n; Nk = 2*ceil(Nk/2); % modes to trust due to quadr err
o.modeord = 1; % use fft output mode ordering
fhat = finufft2d1(xx(:),yy(:),f(:).*ww(:),1,tol,Nk,Nk,o); % do E-F
k = [0:Nk/2-1 -Nk/2:-1]; % Fourier mode grid
[kx ky] = ndgrid(k,k);
kfilter = 1./(kx.^2+ky.^2); % inverse -Laplacian in k-space (as above)
kfilter(1,1) = 0; kfilter(Nk/2+1,:) = 0; kfilter(:,Nk/2+1) = 0;
u = finufft2d2(xx(:),yy(:),-1,tol,kfilter.*fhat,o); % eval filt F series @ NU
u = reshape(real(u),[n n]);
fprintf('n=%d:\tNk=%d\tu(0,0) = %.15e\n',n,Nk,u(1,1)) % check conv at same pt

end

Here a convergence parameter (Nk = 0.5*n) had to be set to choose how many modes to trust with the quadrature.
Thus n is about twice what it needed to be in the uniform case, accounting for the stretching of the grid. The convergence
is again spectral, down to at least tol, and matches the FFT solution at the test point to 12 relative digits:

n=80: Nk=40 u(0,0) = 1.549914931081811e-03
n=120: Nk=60 u(0,0) = 1.549851996895389e-03
n=160: Nk=80 u(0,0) = 1.549852191032026e-03
n=200: Nk=100 u(0,0) = 1.549852191076891e-03
n=240: Nk=120 u(0,0) = 1.549852191077001e-03
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Finally, here is the decay of the modes 𝑓𝑘 on a log plot, for the FFT and NUFFT versions. They are identical down to
the level tol:

The full code is at tutorial/poisson2dnuquad.m.

Note: If the non-Cartesian grids were of tensor product form, one could instead exploit 1D NUFFTs for the above,
and, most likely the use of BLAS3 (ZGEMM with an order-n dense NUDFT matrix) would be optimal.

Note: Using the NUFFT as above does not give an optimal scaling scheme in the case of a fully adaptive grid,
because all frequencies must be handled up to the highest one needed. The latter is controlled by the smallest spatial
scale, so that the number of modes needed, 𝑁 , is no smaller than the number in a uniform spatial discretization of the
original domain at resolution needed to capture the smallest features. In other words, the advantage of full adaptivity
is lost when using the NUFFT, and one may as well have used the FFT with a uniform Cartesian grid. To remedy this
and recover linear complexity in the fully adaptive case, an FMM could be used to convolve 𝑓 with the (periodized)
Laplace fundamental solution to obtain 𝑢, or a multigrid or direct solver used on the discretization of the Laplacian on
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the adaptive grid.

10.4 Efficient sampling from Gaussian Random Fields (GRFs)

A GRF is a random function defined by its power spectral density (PSD) 𝐶(𝑘) as a function of wavevector 𝑘. It is thus
stationary, ie, its statistical properties are translationally invariant. It is also known as a Gaussian process prior. Given
a GRF model, it is important to be able to 1) draw independent samples from the GRF at a given set of target points,
and 2) compute the log likelihood (under the model) of a given function values at a given set of target points. We focus
on the first application. (For the second, see reference at the bottom of this page.)

For certain PSDs, independent samples may be generated by solving a PDE with iid random forcing; however this
introduces boundary effects. Here we simply use Fourier methods to sample directly from any PSD that is a smooth
function of 𝑘, and evaluate at arbitrary target points. The idea is that a regular Fourier grid 𝑘𝑗 be used, with spacing
sufficiently small based upon the size of the spatial domain in which target points lie. This serves as a quadrature
scheme. The GRF model corresponds to random iid coefficients at these Fourier values, withzero mean and variance
𝐶(𝑘𝑗). These coefficients are then evaluated at target points using the type 2 NUFFT.

The code is rudimentary but commented to be self-explanatory:

% demo making indep samples from a 1D Gaussian random field, defined by its
% power spectral density \hat{C}(k), using Fourier methods without any BCs.
% Case of NU target pts, hence needs FINUFFT. (Note FFT is ok for unif targs.)
% Barnett 5/24/19
clear

% choose a GRF spectral density function \hat{C}(k)...
form = 'y'; % 'g' is for checking the variance; 'y' is what you care about.
if form=='g' % Gaussian form (can get superalg convergence wrt K)
K0 = 2e3; % freq width, makes smooth below scale 1/K0
Chat = @(k) (1/sqrt(2*pi)/K0)*exp(-(k/K0).^2/2);

elseif form=='y' % desired Yukawa form (merely algebraic conv wrt K)
alpha = 1.0; beta = 100; gamma = 1; % sqrt(gamma/beta)=0.1 spatial scale
Chat = @(k) (gamma*k.^2 + beta).^-alpha;

end

% user params...
L = 1; % we want to evaluate on domain length D=[0,L].
M = 1e4; % # targs
x = rand(1,M)*L; % user can choose any target pts
tol = 1e-6; % desired NUFFT precision
K = 1e4; % max freq to go out to in Fourier transform for GRF

% alg param setup...
eta = 1.5; % k-quad scheme convergence param, >=1; maybe =1 is enough?
dk_nyq = pi/L; % Nyquist k-grid spacing for the width of target domain
dk = dk_nyq/eta; % k-grid
P = 2*pi/dk % actual period the NUFFT thinks there is
N = 2*K/dk; % how many modes, if # k quadr pts.
N = 2*ceil(N/2) % make even integer
k = (-N/2:N/2-1)*dk; % the k grid

(continues on next page)

10.4. Efficient sampling from Gaussian Random Fields (GRFs) 61

https://github.com/flatironinstitute/finufft/blob/master/tutorial/samplegrf1d.m


FINUFFT Documentation, Release 2.2.0

(continued from previous page)

% check the integral of spectral density (non-stochastic)... 1 for form='g'
I = dk*sum(Chat(k)) % plain trap rule
%figure; loglog(k,Chat(k),'+-'); xlabel('k'); title('check k-quadr scheme');

nr = 3e2; % # reps, ie indep samples from GRF drawn.. 1e3 takes 3 sec
fprintf('sampling %d times... ',nr);
gvar = zeros(M,1); % accumulate the ptwise variance
figure;
for r=1:nr

fk = ((randn(1,N)+1i*randn(1,N))/sqrt(2)) .* sqrt(dk*Chat(k)); % spec ampl
g = finufft1d2(x/P,+1,tol,fk); % do it, outputting g at targs
if r<=5, h=plot(x,real(g),'.'); hold on; end % show a few samples
gvar = gvar + abs(g).^2;

end
gvar = gvar/nr;
fprintf('done. mean ptwise var g = %.3f\n',mean(gvar))

xlabel('x'); h2=plot(x,gvar, 'ko'); legend([h h2],'samples g(x)','est var g(x)')
v=axis; v(1:2)=[0 L]; axis(v);
title(sprintf('1D GRF type %s: a few samples, and ptwise variance',form));

The result is as follows, showing 5 samples from a Yukawa or Matern kernel, plus the pointwise variance estimated
from 300 samples:

The calculation takes around 1 second.

If 𝐶(𝑘) has singularities or discontinuities, a different 𝑘-space quadrature scheme would be needed. For an example
of this, sampling from a 2D GRF, see random plane waves.
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10.4.1 Further reading

For background on Gaussian random fields, aka, Gaussian processes, see:

• C E Rasmussen & C K I Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006. http:
//www.GaussianProcess.org/gpml

• Fast Direct Methods for Gaussian Processes, Sivaram Ambikasaran, Daniel Foreman-Mackey, Leslie Greengard,
David W. Hogg, and Michael O’Neil. arxiv:1403.6015 (2015)

10.5 Inverse 1D type 2 NUFFT: fitting a Fourier series to scattered
samples

This tutorial demonstrates inversion of the NUFFT using an iterative solver and FINUFFT. For convenience it is in
MATLAB/Octave. The task is to solve for 𝑁 Fourier series coefficients 𝑓𝑘, indexed by −𝑁/2 ≤ 𝑘 < 𝑁/2, given
samples 𝑦𝑗 , 𝑗 = 1, . . . ,𝑀 of an unknown 2𝜋-periodic function 𝑓(𝑥) at some given nodes 𝑥𝑗 , 𝑗 = 1, . . . ,𝑀 . This has
applications in signal analysis, as well as being a 1D version of the MRI problem (where the roles of real vs Fourier
space are flipped). Note that there are many other methods to fit smooth functions from nonequispaced samples, eg
high-order local Lagrange interpolation. However, often your model for the function is a global Fourier series, in which
case, what we describe below is a good starting point. We assume that the samples are noise-free and no regularization
is needed. We illustrate a well-conditioned then an ill-conditioned case.

Here’s code to set up a random complex-valued test problem of size 600000 by 300000 (way too large to solve directly):

N = 3e5; % how many unknown coeffs
ks = -floor(N/2) + (0:N-1); % row vec of the frequency k indices
M = 2*N; % overdetermined by a factor 2
x = 2*pi*((0:M-1)' + 2*rand(M,1))/M; % jittered-from-uniform points on the periodic␣
→˓domain
ftrue = randn(N,1) + 1i*randn(N,1); % choose known Fourier coeffs at k inds
ftrue = ftrue/sqrt(N); % scale signal f(x) to variance=1, Re or Im part
y = finufft1d2(x,+1,1e-12,ftrue); % eval noiseless data at high accuracy

10.5.1 Well-conditioned example

The linear system to solve is ∑︁
−𝑁/2≤𝑘<𝑁/2

𝑒𝑖𝑘𝑥𝑗𝑓𝑘 = 𝑦𝑗 for 𝑗 = 1, . . . ,𝑀. (10.3)

This is formally overdetermined (𝑀 > 𝑁 ), although it may still be ill-conditioned when the distribution of sample
points {𝑥𝑗} has large gaps. The above jittered point choice has no gaps larger than about 0.8 wavelengths at the max
frequency 𝑁/2, and will turn out to be well-conditioned. It is to be solved in the least-squares sense. It is abbreviated
by

𝐴f = y

where the 𝑀 ×𝑁 matrix has elements 𝐴𝑗𝑘 = 𝑒𝑖𝑘𝑥𝑗 . Left-multiplying by the conjugate 𝐴* gives the normal equations

𝐴*𝐴f = 𝐴*y

where the system matrix 𝐴*𝐴 is symmetric positive definite, so we use conjugate gradients (CG) to solve it iteratively.
We first evaluate the normal equations right-hand side via
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rhs = finufft1d1(x,y,-1,tol,N); % compute A^* y

We compare two ways to multiply 𝐴*𝐴 to a vector (perform the “matvec”) in the iterative solver.

1) Matvec via a sequential pair of NUFFTs. Here the matvec code is

function AHAf = applyAHA(f,x,tol) % use pair of NUFFTs to apply A^*A to f
Af = finufft1d2(x,+1,tol,f); % apply A
AHAf = finufft1d1(x,Af,-1,tol,length(f)); % then apply A^*

end

We target 6 digits from CG using this matvec function, then test the residual and actual solution error:

[f,flag,relres,iter] = pcg(@(f) applyAHA(f,x,1e-6), rhs, 1e-6, N);
fprintf('rel l2 resid of Af=y: %.3g\n', norm(finufft1d2(x,+1,tol,f)-y)/norm(y))
fprintf('rel l2 coeff err: %.3g\n', norm(f-ftrue)/norm(ftrue))

This reaches relres<1e-6 in 28 iterations, indicating a well-conditioned system. This takes 1.6 seconds on an 8-core
laptop. The residual of the original system and the error from the true coefficients are quite close to the normal equation
residual:

rel l2 resid of Ax=y: 1.69e-06
rel l2 coeff err: 4.14e-06

Also of interest is the maximum (uniform or 𝐿∞) error, which we can estimate on a fine grid:

ng = 10*N; xg = 2*pi*(0:ng)/ng; % set up fine plot grid
ytrueg = finufft1d2(xg,+1,1e-12,ftrue); % eval true series there
yg = finufft1d2(xg,+1,1e-12,f); % eval recovered series there
fprintf('abs max err: %.3g\n', norm(yg-ytrueg,inf))

This returns abs max err: 0.00146, 3 digits worse than the ℓ2 coefficient error, indicating that there are some
locations for the problem which are not entirely well-conditioned. Yet, almost everywhere we see excellent matching
of the recovered to the true function to 5-6 digits, for instance in this zoom in of the first 0.03% of the periodic domain:

10.5. Inverse 1D type 2 NUFFT: fitting a Fourier series to scattered samples 64



FINUFFT Documentation, Release 2.2.0

2) Matvec exploiting Toeplitz structure via a pair of padded FFTs. A beautiful realization comes from examining
the usual matrix-matrix multiplication formula for entries of the system matrix for the normal equations,

(𝐴*𝐴)𝑘,𝑘′ =

𝑀∑︁
𝑗=1

𝑒𝑖(𝑘−𝑘′)𝑥𝑗 for −𝑁/2 ≤ 𝑘, 𝑘′ < 𝑁/2.

We see the 𝑘, 𝑘′-entry only depends on 𝑘 − 𝑘′, thus 𝐴*𝐴 is Toeplitz (constant along diagonals). Its action on a vector
is thus a discrete convolution with a length 2𝑁 − 1 vector that we call 𝑣. From the above formula, 𝑣 may be filled via
a type 1 NUFFT with unit strengths:

v = finufft1d1(x, ones(size(x)), -1, tol, 2*N-1); % Toep vec, inds -(N-1):(N+1)
vhat = fft([v;0]); % pad to length 2N

We now use a pair of padded FFTs in a function (see tutorial/applyToep.m for the documented self-testing version)
which applies the discrete convolution to any vector 𝑓 :

function Tf = applyToep(f,vhat) % perform Toeplitz matvec on vector f
N = numel(f);
fpadhat = fft(f(:),2*N); % first zero-pads out to size of vhat
Tf = ifft(fpadhat .* vhat(:)); % do periodic convolution
Tf = Tf(N:end-1); % extract correct chunk of padded output

end

Note: Since FFTs are periodic, the minimum length that padded FFTs can be to correctly compute the central 𝑁
entries of the nonperiodic convolution of a length 𝑁 vector with a length 2𝑁 − 1 vector is 2𝑁 − 1. However, for
𝑁 = 3 × 105, 2𝑁 − 1 = 599999 is prime! Its FFT is several times slower than one of length 2𝑁 . Thus we choose
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2𝑁 as the padded length; a more optimized code might pad to the next 5-smooth even number above 2𝑁 − 1, using,
eg, next235even.

The solver command with this matvec is:

[f,flag,relres,iter] = pcg(@(f) applyToep(f,vhat), rhs, 1e-6, N);

The resulting iteration count is identical to that for the NUFFT-based matvec, but the CPU time is now 0.65 seconds, ie,
2.5x faster. As a reminder, this is because the spreading/interpolation operations in the NUFFTs are avoided (the FFT
sizes in the NUFFTs being similar to those in this Toeplitz matvec). The errors and plots are very similar to before.

10.5.2 Ill-conditioned example

The conditioning of the inverse NUFFT problem is set by the nonuniform (sample) point distribution, as well as 𝑁 . To
illustrate, we now keep 𝑁 and 𝑀 the same, but switch to iid random points:

x = 2*pi*rand(M,1);

We use the Toeplitz FFT matvec (method 2 above), and now find that CG reaches the requested relres<1e-6 in a
huge 1461 iterations (the large count implying poor conditioning), taking 35 seconds. The above error diagnosis code
lines now give:

rel l2 resid of Af=y: 2.62e-05
rel l2 coeff err: 0.0236
abs max err: 2.4

Here the residual shows that the linear system was still solved reasonably accurately, but that the coefficient error is
now much worse. This is typical behavior for an ill-conditioned problem. Their ratio of coefficient error to residual
(both in ℓ2 norms) places a lower bound on the condition number 𝜅(𝐴) of about 900. This explains the large iteration
count for the normal equations, since their condition number is 𝜅(𝐴*𝐴) = 𝜅(𝐴)2.

The error in the signal 𝑓(𝑥) turns out to be very unequally distributed for this problem: it is correct to 4-5 digits almost
everywhere, including at almost all the data points, while errors are 𝒪(1) only near the very largest gaps between the
(iid random) sample points. Here is a picture near such a gap:
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The gap near𝑥 ≈ 0.9212 has size 0.00009, which is about two wavelengths at the Nyquist frequency𝑁/2. The observed
ill-conditioning is a feature of the problem, and cannot be changed by a different solution method. Indeed, it can be
shown mathematically that the problem of interpolating a band-limited function is exponentially ill-conditioned with
respect to the length of any node-free gap measured in Nyquist wavelengths. This partially explains the ill-conditioning
observed above.

Note: The coefficient and 𝑓(𝑥) reconstruction error could be reduced in the above demo (without changing the
conditioning) by reducing the residual (ie, setting a smaller CG stopping criterion); however, the 1e-6 relative residual
stopping value used already presumes that the data were at least 6-digit accurate (0.0001% measurement error), which
is already a stretch in any practical problem. In short, it is not meaningful to demand residuals much lower than the
data measurement error.

Two ways to change the problem to reduce ill-conditioning include: 1) changing the sampling point distribution to
avoid large gaps, and 2) changing the problem by introducing a regularization term.

The 2nd idea here also fits into the iterative NUFFT or Toeplitz frameworks, and we plan to present it in another tutorial
shortly. We have also not yet discussed the use of preconditioning (such as those for Toeplitz systems in Raymond
Chan’s book) to reduce the iteration count of CG.

For the complete code for the above examples and plots, including a naive dense direct solve for small problems (a
useful warm-up exercise), see tutorial/inv1d2.m.
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10.5.3 Further reading

For the 1D inversion with 𝑀 = 𝑁 and no regularization there are interpolation methods using the fast multipole
method for the cotangent kernel, eg:

• A Dutt and V Rokhlin, Fast Fourier transforms for nonequispaced data, II. Appl. Comput. Harmonic Anal. 2,
85–100 (1995)

For the 2D iterative version using a Toeplitz matrix-vector multiply for CG on the normal equations, in the MRI settings,
see:

• J A Fessler et al, Toeplitz-Based Iterative Image Reconstruction for MRI With Correction for Magnetic Field
Inhomogeneity. IEEE Trans. Sig. Proc. 53(9) 3393 (2005).

For background on condition number of a problem, see Chapters 12-15 of Trefethen and Bau, Numerical Linear Algebra
(SIAM, 1997).

For further applications, see references, and:

• These software tutorial PDF slides.

• These seminar PDF slides.

• Fast Fresnel diffraction for optics and acoustics applications.

• Equispaced Fourier methods for Gaussian process regression as described in https://arxiv.org/abs/2210.10210
and https://arxiv.org/abs/2305.11065

• Tutorials for PyNUFFT with 1D and 2D reconstruction examples here.

• The numerical sampling of random plane waves.
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CHAPTER

ELEVEN

USAGE FROM FORTRAN

We provide Fortran interfaces that are very similar to those in C/C++. We deliberately use “legacy” Fortran style (in
the terminology of FFTW), enabling the widest applicability and avoiding the complexity of later Fortran features.
Namely, we use f77, with two features from f90: dynamic allocation and derived types. The latter is only needed if
options must be changed from default values. We also include, listed at the bottom below, a “modern” f90 demo using
a module.

11.1 Quick-start example

To perform a double-precision 1D type 1 transform from M nonuniform points xj with strengths cj, to N output modes
whose coefficients will be written into the fk array, using 9-digit tolerance, the +𝑖 imaginary sign, and default options,
the declarations and call are

integer ier,iflag
integer*8 N,M
real*8, allocatable :: xj(:)
real*8 tol
complex*16, allocatable :: cj(:),fk(:)
integer*8, allocatable :: null

! (...allocate xj, cj, and fk, and fill xj and cj here...)

tol = 1.0D-9
iflag = +1
call finufft1d1(M,xj,cj,iflag,tol,N,fk,null,ier)

which writes the output to fk, and the status to the integer ier. Since the default is CMCL mode ordering, the output
for frequency index k is found in fk(k+N/2+1). ier=0 indicates success, otherwise error codes are as in here. All
available OMP threads are used, unless FINUFFT was built single-threaded. (Note that here the unallocated null is
simply a way to pass a NULL pointer to our C++ wrapper; another would be %val(0_8).) For a minimally complete
test code demonstrating the above see fortran/examples/simple1d1.f.

Note: Higher-dimensional arrays are stored in Fortran ordering with 𝑥 (N1) the fastest direction, and, in the vector-
ized (“many”) calls, the transform number is slowest (transforms are stacked not interleaved). For instance, for the
2D type 1 vectorized transform finufft2d1many(ntrans,M,xj,yj,cj,iflag,tol,N1,N2,fk,opts,ier) with
CMCL mode-ordering, the (k1,k2) frequency coefficient from transform number t is to be found at fk(k1+N1/2+1
+ (k2+N2/2)*N1 + t*N1*N2).

From the fortran/examples/ directory, to compile (eg using GCC/linux) and link such a program against the FIN-
UFFT static library, one must list dependent libraries by hand:
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gfortran -I../../include simple1d1.f -o simple1d1 ../../lib-static/libfinufft.a -lfftw3 -
→˓lfftw3_omp -lgomp -lstdc++

Then to execute run ./simple1d1. Alternatively, a smaller executable results by linking against the dynamic (.so)
library (which links all dependent libraries):

gfortran -I../../include simple1d1.f -o simple1d1 -L../../lib -Wl,-rpath=$FINUFFT/lib -
→˓lfinufft

where $FINUFFT must be replaced by (or be an environment variable set to) the absolute install path for this repository.
Note the use of rpath to make an executable that may be run from, or moved to, any directory. Alternatively you may
want to compile with g++ and use -lgfortran at the end of the compile statement instead of -lstdc++. In Mac OSX,
replace fftw3_omp by fftw3_threads, and if you use clang, -lgomp by -lomp. See makefile and make.inc.*.

Note: Our simple interface is designed to be a near drop-in replacement for the native f90 CMCL libraries of
Greengard-Lee. The differences are: i) we added a penultimate argument in the list which allows options to be changed,
and ii) our normalization differs for type 1 transforms (divide FINUFFT output by 𝑀 to match CMCL output).

11.2 Changing options

To choose non-default options in the above example, create an options derived type, set it to default values, change
whichever you wish, and pass it to FINUFFT, for instance

include 'finufft.fh'
type(finufft_opts) opts

! (...declare, allocate, and fill stuff as above...)

call finufft_default_opts(opts)
opts%debug = 2
opts%upsampfac = 1.25d0
call finufft1d1(M,xj,cj,iflag,tol,N,fk,opts,ier)

See fortran/examples/simple1d1.f for the complete code, and below for the complete list of Fortran subroutines
available, and more complicated examples.

See modeord in Options to instead use FFT-style mode ordering, which simply differs by an fftshift (as it is com-
monly called).

11.3 Summary of Fortran interface

The names of routines and the meanings of all arguments is identical to the C/C++ routines. Eg, finufft2d3 means
double-precision 2D transform of type 3. finufft2d3many means applying double-precision 2D transforms of type 3
to a stack of many strength vectors (vectorized interface). finufft2d3f means single-precision 2D type 3. The guru
interface has very similar arguments to its C/C++ version. Compared to C/C++, all argument lists have ier appended
at the end, to which the status is written; this is the same as the return value in the C/C++ interfaces. These routines
and arguments are, in double-precision:
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include 'finufft.fh'
! (or in F90 one may instead "use finufft_mod")

integer ier,iflag,ntrans,type,dim
integer*8 M,N1,N2,N3,Nk
integer*8 plan,n_modes(3)
real*8, allocatable :: xj(:),yj(:),zj(:), sk(:),tk(:),uk(:)
real*8 tol
complex*16, allocatable :: cj(:), fk(:)
type(finufft_opts) opts

! simple interface
call finufft1d1(M,xj,cj,iflag,tol,N1,fk,opts,ier)
call finufft1d2(M,xj,cj,iflag,tol,N1,fk,opts,ier)
call finufft1d3(M,xj,cj,iflag,tol,Nk,sk,fk,opts,ier)
call finufft2d1(M,xj,yj,cj,iflag,tol,N1,N2,fk,opts,ier)
call finufft2d2(M,xj,yj,cj,iflag,tol,N1,N2,fk,opts,ier)
call finufft2d3(M,xj,yj,cj,iflag,tol,Nk,sk,tk,fk,opts,ier)
call finufft3d1(M,xj,yj,zj,cj,iflag,tol,N1,N2,N3,fk,opts,ier)
call finufft3d2(M,xj,yj,zj,cj,iflag,tol,N1,N2,N3,fk,opts,ier)
call finufft3d3(M,xj,yj,zj,cj,iflag,tol,Nk,sk,tk,uk,fk,opts,ier)

! vectorized interface
call finufft1d1many(ntrans,M,xj,cj,iflag,tol,N1,fk,opts,ier)
call finufft1d2many(ntrans,M,xj,cj,iflag,tol,N1,fk,opts,ier)
call finufft1d3many(ntrans,M,xj,cj,iflag,tol,Nk,sk,fk,opts,ier)
call finufft2d1many(ntrans,M,xj,yj,cj,iflag,tol,N1,N2,fk,opts,ier)
call finufft2d2many(ntrans,M,xj,yj,cj,iflag,tol,N1,N2,fk,opts,ier)
call finufft2d3many(ntrans,M,xj,yj,cj,iflag,tol,Nk,sk,tk,fk,opts,ier)
call finufft3d1many(ntrans,M,xj,yj,zj,cj,iflag,tol,N1,N2,N3,fk,opts,ier)
call finufft3d2many(ntrans,M,xj,yj,zj,cj,iflag,tol,N1,N2,N3,fk,opts,ier)
call finufft3d3many(ntrans,M,xj,yj,zj,cj,iflag,tol,Nk,sk,tk,uk,fk,opts,ier)

! guru interface
call finufft_makeplan(type,dim,n_modes,iflag,ntrans,tol,plan,opts,ier)
call finufft_setpts(plan,M,xj,yj,zj,Nk,sk,yk,uk,ier)
call finufft_execute(plan,cj,fk,ier)
call finufft_destroy(plan,ier)

The single-precision (ie, real*4 and complex*8) functions are identical except with the replacement of finufft
with finufftf in each function name. All are defined (from the C++ side) in fortran/finufftfort.cpp.

11.4 Code examples

The fortran/examples directory contains the following demos, mostly in both precisions. Each has a math test to
check the correctness of some or all outputs:

simple1d1.f - 1D type 1, simple interface, default and various opts
guru1d1.f - 1D type 1, guru interface, default and various opts
nufft1d_demo.f - 1D types 1,2,3, minimally changed from CMCL demo codes
nufft2d_demo.f - 2D "

(continues on next page)
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(continued from previous page)

nufft3d_demo.f - 3D "
nufft2dmany_demo.f - 2D types 1,2,3, vectorized (many strengths) interface
simple1d1.f90 - modern Fortran90 version of simple1d1 using module

These are the double-precision file names; the single precision have a suffix f before the .f (apart from the f90 which
has no single-precision version). The last four here are modified from demos in the CMCL NUFFT libraries. The
first three of these have been changed only to use FINUFFT. The final tolerance they request is tol=1d-16. For this
case FINUFFT will report a warning that it cannot achieve it, and gets merely around 10−14. The last four demos
require direct summation (slow) reference implementations of the transforms in fortran/directft, modified from
their CMCL counterparts only to remove the 1/𝑀 prefactor for type 1 transforms.

All demos have self-contained example GCC compilation/linking commands in their comment headers. For dynamic
linking so that execution works from any directory, bake in an absolute path via the compile flag -Wl,-rpath,
$(FINUFFT)/lib.

For authorship and licensing of the Fortran wrappers, see the README in the fortran directory.
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TWELVE

MATLAB/OCTAVE INTERFACES

Note: See the installation page for how to build these interfaces, or look here.

12.1 Quick-start examples

To demo a single 1D transform of type 1 (nonuniform points to uniform Fourier coefficients), we set up random data
then do the transform as follows:

M = 1e5; % number of NU source points
x = 2*pi*rand(M,1); % points in a 2pi-periodic domain
c = randn(M,1)+1i*randn(M,1); % iid random complex data (row or col vec)
N = 2e5; % how many desired Fourier modes?
f = finufft1d1(x,c,+1,1e-12,N); % do it (takes around 0.02 sec)

The column vector output f should be interpreted as the Fourier coefficients with frequency indices k = -N/2:N/2-1.
(This is because N is even; otherwise k = -(N-1)/2:(N-1)/2.) The values in f are accurate (relative to this vector’s
2-norm) to roughly 12 digits, as requested by the tolerance argument 1e-12. Choosing a larger (ie, worse) tolerance
leads to faster transforms. The +1 controls the sign in the exponential; recall equation (1.1). All options maybe be
changed from their defaults, for instance:

o.modeord = 1; % choose FFT-style output mode ordering
f = finufft1d1(x,c,+1,1e-12,N,o); % do it

The above usage we call the “simple” interface. There is also a “vectorized” interface which does the transform for
multiple stacked strength vectors, using the same nonuniform points each time. We demo this, reusing x and N from
above:

ntr = 1e2; % number of vectors (transforms to do)
C = randn(M,ntr)+1i*randn(M,ntr); % iid random complex data (matrix)
F = finufft1d1(x,C,+1,1e-12,N); % do them (takes around 1.2 sec)

Here this is nearly twice as fast as doing 100 separate calls to the simple interface. For smaller transform sizes the
acceleration factor of this vectorized call can be much higher.

If you want yet more control, consider using the “guru” interface. This can be faster than fresh calls to the simple or
vectorized interfaces for the same number of transforms, for reasons such as this: the nonuniform points can be changed
between transforms, without forcing FFTW to look up a previously stored plan. Usually, such an acceleration is only
important when doing repeated small transforms, where “small” means each transform takes of order 0.01 sec or less.
Here we use the guru interface to repeat the first demo above:
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type = 1; ntr = 1; o.modeord = 1; % transform type, #transforms, opts
N = 2e5; % how many desired Fourier modes?
plan = finufft_plan(1,N,+1,ntr,1e-12,o); % plan for N output modes
M = 1e5; % number of NU source points
x = 2*pi*rand(M,1); % array of NU source points
plan.setpts(x,[],[]); % pass pointer to this array (M inferred)
% (note: the x array should now not be altered until all executes are done!)
c = randn(M,1)+1i*randn(M,1); % iid random complex data (row or col vec)
f = plan.execute(c); % do the transform (0.008 sec, ie, faster)
% ...one could now change the points with setpts, and/or do new transforms
% with new c data...
delete(plan); % don't forget to clean up

Warning: If an existing array is passed to setpts, then this array must not be altered before execute is called!
This is because, in order to save RAM (allowing larger problems to be solved), internally FINUFFT stores only
pointers to x (etc), rather than unnecessarily duplicating this data. This is not true if an expression such as -x
or 2*pi*rand(M,1) is passed to setpts, since in those cases the plan object does make internal copies, as per
MATLAB’s usual shallow-copy argument passing.

Finally, we demo a 2D type 1 transform using the simple interface. Let’s request a rectangular Fourier mode array of
1000 modes in the x direction but 500 in the y direction. The source points are in the square of side length 2𝜋:

M = 1e6; x = 2*pi*rand(1,M); y = 2*pi*rand(1,M); % points in [0,2pi]^2
c = randn(M,1)+1i*randn(M,1); % iid random complex data (row or col vec)
N1 = 1000; N2 = 500; % desired Fourier mode array sizes
f = finufft2d1(x,y,c,+1,1e-9,N1,N2); % do it (takes around 0.08 sec)

The resulting output f is indeed size 1000 by 500. The first dimension (number of rows) corresponds to the x input
coordinate, and the second to y.

If you need to change the definition of the period from 2𝜋, simply linearly rescale your points before sending them to
FINUFFT.

Note: Under the hood FINUFFT has double- and single-precision libraries. The simple and vectorized MAT-
LAB/octave interfaces infer which to call by checking the class of its input arrays, which must all match (ie, all must be
double or all must be single). Since by default MATLAB arrays are double-precision, this is the precision that all of
the above examples run in. To perform single-precision transforms, send in single-precision data. In contrast, precision
in the guru interface is set with the finufft_plan option string o.floatprec, either 'double' (the default), or
'single'.

See tests and examples in the repo and tutorials and demos for plenty more MATLAB examples.
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12.2 Full documentation

Here are the help documentation strings for all MATLAB/octave interfaces. They only abbreviate the options (for full
documentation see Options parameters). Informative warnings and errors are raised in MATLAB style with unique
codes (see ../matlab/errhandler.m, ../matlab/finufft.mw, and ../valid_*.m). The low-level error number
codes are not used.

If you have added the matlab directory of FINUFFT correctly to your MATLAB path via something like addpath
FINUFFT/matlab, then help finufft/matlab will give the summary of all commands:

% FINUFFT: Flatiron Institute Nonuniform Fast Fourier Transform
% Version 2.2.0
%
% Basic and many-vector interfaces
% finufft1d1 - 1D complex nonuniform FFT of type 1 (nonuniform to uniform).
% finufft1d2 - 1D complex nonuniform FFT of type 2 (uniform to nonuniform).
% finufft1d3 - 1D complex nonuniform FFT of type 3 (nonuniform to nonuniform).
% finufft2d1 - 2D complex nonuniform FFT of type 1 (nonuniform to uniform).
% finufft2d2 - 2D complex nonuniform FFT of type 2 (uniform to nonuniform).
% finufft2d3 - 2D complex nonuniform FFT of type 3 (nonuniform to nonuniform).
% finufft3d1 - 3D complex nonuniform FFT of type 1 (nonuniform to uniform).
% finufft3d2 - 3D complex nonuniform FFT of type 2 (uniform to nonuniform).
% finufft3d3 - 3D complex nonuniform FFT of type 3 (nonuniform to nonuniform).
%
% Guru interface
% finufft_plan - create guru plan object for one/many general nonuniform FFTs.
% finufft_plan.setpts - process nonuniform points for general transform(s).
% finufft_plan.execute - single or many-vector transforms in a plan.

The individual commands have the following help documentation:

FINUFFT1D1 1D complex nonuniform FFT of type 1 (nonuniform to uniform).

f = finufft1d1(x,c,isign,eps,ms)
f = finufft1d1(x,c,isign,eps,ms,opts)

This computes, to relative precision eps, via a fast algorithm:

nj
f(k1) = SUM c[j] exp(+/-i k1 x(j)) for -ms/2 <= k1 <= (ms-1)/2

j=1
Inputs:
x length-nj vector of real-valued locations of nonuniform sources
c length-nj complex vector of source strengths. If numel(c)>nj,

expects a stack of vectors (eg, a nj*ntrans matrix) each of which is
transformed with the same source locations.

isign if >=0, uses + sign in exponential, otherwise - sign.
eps relative precision requested (generally between 1e-15 and 1e-1)
ms number of Fourier modes computed, may be even or odd;

in either case, mode range is integers lying in [-ms/2, (ms-1)/2]
opts optional struct with optional fields controlling the following:
opts.debug: 0 (silent, default), 1 (timing breakdown), 2 (debug info).
opts.spread_debug: spreader: 0 (no text, default), 1 (some), or 2 (lots)

(continues on next page)
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opts.spread_sort: 0 (don't sort NU pts), 1 (do), 2 (auto, default)
opts.spread_kerevalmeth: 0: exp(sqrt()), 1: Horner ppval (faster)
opts.spread_kerpad: (iff kerevalmeth=0) 0: don't pad to mult of 4, 1: do
opts.fftw: FFTW plan mode, 64=FFTW_ESTIMATE (default), 0=FFTW_MEASURE, etc
opts.upsampfac: sigma. 2.0 (default), or 1.25 (low RAM, smaller FFT)
opts.spread_thread: for ntrans>1 only. 0:auto, 1:seq multi, 2:par, etc
opts.maxbatchsize: for ntrans>1 only. max blocking size, or 0 for auto.
opts.nthreads: number of threads, or 0: use all available (default)
opts.modeord: 0 (CMCL increasing mode ordering, default), 1 (FFT ordering)
opts.chkbnds: [DEPRECATED] has no effect

Outputs:
f size-ms complex column vector of Fourier coefficients, or, if

ntrans>1, a matrix of size (ms,ntrans).

Notes:
* The vectorized (many vector) interface, ie ntrans>1, can be much faster
than repeated calls with the same nonuniform points. Note that here the I/O
data ordering is stacked rather than interleaved. See ../docs/matlab.rst

* The class of input x (double vs single) controls whether the double or
single precision library are called; precisions of all data should match.

* For more details about the opts fields, see ../docs/opts.rst
* See ERRHANDLER, VALID_* and FINUFFT_PLAN for possible warning/error IDs.
* Full documentation is online at http://finufft.readthedocs.io

FINUFFT1D2 1D complex nonuniform FFT of type 2 (uniform to nonuniform).

c = finufft1d2(x,isign,eps,f)
c = finufft1d2(x,isign,eps,f,opts)

This computes, to relative precision eps, via a fast algorithm:

c[j] = SUM f[k1] exp(+/-i k1 x[j]) for j = 1,...,nj
k1

where sum is over -ms/2 <= k1 <= (ms-1)/2.

Inputs:
x length-nj vector of real-valued locations of nonuniform sources
f complex Fourier coefficients. If a vector, length sets ms

(with mode ordering given by opts.modeord). If a matrix, each
of ntrans columns is transformed with the same nonuniform targets.

isign if >=0, uses + sign in exponential, otherwise - sign.
eps relative precision requested (generally between 1e-15 and 1e-1)
opts optional struct with optional fields controlling the following:
opts.debug: 0 (silent, default), 1 (timing breakdown), 2 (debug info).
opts.spread_debug: spreader: 0 (no text, default), 1 (some), or 2 (lots)
opts.spread_sort: 0 (don't sort NU pts), 1 (do), 2 (auto, default)
opts.spread_kerevalmeth: 0: exp(sqrt()), 1: Horner ppval (faster)
opts.spread_kerpad: (iff kerevalmeth=0) 0: don't pad to mult of 4, 1: do
opts.fftw: FFTW plan mode, 64=FFTW_ESTIMATE (default), 0=FFTW_MEASURE, etc
opts.upsampfac: sigma. 2.0 (default), or 1.25 (low RAM, smaller FFT)
opts.spread_thread: for ntrans>1 only. 0:auto, 1:seq multi, 2:par, etc
opts.maxbatchsize: for ntrans>1 only. max blocking size, or 0 for auto.

(continues on next page)

12.2. Full documentation 76



FINUFFT Documentation, Release 2.2.0

(continued from previous page)

opts.nthreads: number of threads, or 0: use all available (default)
opts.modeord: 0 (CMCL increasing mode ordering, default), 1 (FFT ordering)
opts.chkbnds: [DEPRECATED] has no effect

Outputs:
c complex column vector of nj answers at targets, or,

if ntrans>1, matrix of size (nj,ntrans).

Notes:
* The vectorized (many vector) interface, ie ntrans>1, can be much faster
than repeated calls with the same nonuniform points. Note that here the I/O
data ordering is stacked rather than interleaved. See ../docs/matlab.rst

* The class of input x (double vs single) controls whether the double or
single precision library are called; precisions of all data should match.

* For more details about the opts fields, see ../docs/opts.rst
* See ERRHANDLER, VALID_* and FINUFFT_PLAN for possible warning/error IDs.
* Full documentation is online at http://finufft.readthedocs.io

FINUFFT1D3 1D complex nonuniform FFT of type 3 (nonuniform to nonuniform).

f = finufft1d3(x,c,isign,eps,s)
f = finufft1d3(x,c,isign,eps,s,opts)

This computes, to relative precision eps, via a fast algorithm:

nj
f[k] = SUM c[j] exp(+-i s[k] x[j]), for k = 1, ..., nk

j=1
Inputs:
x length-nj vector of real-valued locations of nonuniform sources
c length-nj complex vector of source strengths. If numel(c)>nj,

expects a stack of vectors (eg, a nj*ntrans matrix) each of which is
transformed with the same source and target locations.

isign if >=0, uses + sign in exponential, otherwise - sign.
eps relative precision requested (generally between 1e-15 and 1e-1)
s length-nk vector of frequency locations of nonuniform targets
opts optional struct with optional fields controlling the following:
opts.debug: 0 (silent, default), 1 (timing breakdown), 2 (debug info).
opts.spread_debug: spreader: 0 (no text, default), 1 (some), or 2 (lots)
opts.spread_sort: 0 (don't sort NU pts), 1 (do), 2 (auto, default)
opts.spread_kerevalmeth: 0: exp(sqrt()), 1: Horner ppval (faster)
opts.spread_kerpad: (iff kerevalmeth=0) 0: don't pad to mult of 4, 1: do
opts.fftw: FFTW plan mode, 64=FFTW_ESTIMATE (default), 0=FFTW_MEASURE, etc
opts.upsampfac: sigma. 2.0 (default), or 1.25 (low RAM, smaller FFT)
opts.spread_thread: for ntrans>1 only. 0:auto, 1:seq multi, 2:par, etc
opts.maxbatchsize: for ntrans>1 only. max blocking size, or 0 for auto.
opts.nthreads: number of threads, or 0: use all available (default)

Outputs:
f length-nk complex vector of values at targets, or, if ntrans>1,

a matrix of size (nk,ntrans)

Notes:
* The vectorized (many vector) interface, ie ntrans>1, can be much faster

(continues on next page)
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than repeated calls with the same nonuniform points. Note that here the I/O
data ordering is stacked rather than interleaved. See ../docs/matlab.rst

* The class of input x (double vs single) controls whether the double or
single precision library are called; precisions of all data should match.

* For more details about the opts fields, see ../docs/opts.rst
* See ERRHANDLER, VALID_* and FINUFFT_PLAN for possible warning/error IDs.
* Full documentation is online at http://finufft.readthedocs.io

FINUFFT2D1 2D complex nonuniform FFT of type 1 (nonuniform to uniform).

f = finufft2d1(x,y,c,isign,eps,ms,mt)
f = finufft2d1(x,y,c,isign,eps,ms,mt,opts)

This computes, to relative precision eps, via a fast algorithm:

nj
f[k1,k2] = SUM c[j] exp(+-i (k1 x[j] + k2 y[j]))

j=1

for -ms/2 <= k1 <= (ms-1)/2, -mt/2 <= k2 <= (mt-1)/2.

Inputs:
x,y real-valued coordinates of nonuniform sources in the plane,

each a length-nj vector
c length-nj complex vector of source strengths. If numel(c)>nj,

expects a stack of vectors (eg, a nj*ntrans matrix) each of which is
transformed with the same source locations.

isign if >=0, uses + sign in exponential, otherwise - sign.
eps relative precision requested (generally between 1e-15 and 1e-1)
ms,mt number of Fourier modes requested in x & y; each may be even or odd.

In either case the mode range is integers lying in [-m/2, (m-1)/2]
opts optional struct with optional fields controlling the following:
opts.debug: 0 (silent, default), 1 (timing breakdown), 2 (debug info).
opts.spread_debug: spreader: 0 (no text, default), 1 (some), or 2 (lots)
opts.spread_sort: 0 (don't sort NU pts), 1 (do), 2 (auto, default)
opts.spread_kerevalmeth: 0: exp(sqrt()), 1: Horner ppval (faster)
opts.spread_kerpad: (iff kerevalmeth=0) 0: don't pad to mult of 4, 1: do
opts.fftw: FFTW plan mode, 64=FFTW_ESTIMATE (default), 0=FFTW_MEASURE, etc
opts.upsampfac: sigma. 2.0 (default), or 1.25 (low RAM, smaller FFT)
opts.spread_thread: for ntrans>1 only. 0:auto, 1:seq multi, 2:par, etc
opts.maxbatchsize: for ntrans>1 only. max blocking size, or 0 for auto.
opts.nthreads: number of threads, or 0: use all available (default)
opts.modeord: 0 (CMCL increasing mode ordering, default), 1 (FFT ordering)
opts.chkbnds: [DEPRECATED] has no effect

Outputs:
f size (ms,mt) complex matrix of Fourier coefficients

(ordering given by opts.modeord in each dimension; ms fast, mt slow),
or, if ntrans>1, a 3D array of size (ms,mt,ntrans).

Notes:
* The vectorized (many vector) interface, ie ntrans>1, can be much faster
than repeated calls with the same nonuniform points. Note that here the I/O

(continues on next page)
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data ordering is stacked rather than interleaved. See ../docs/matlab.rst
* The class of input x (double vs single) controls whether the double or
single precision library are called; precisions of all data should match.

* For more details about the opts fields, see ../docs/opts.rst
* See ERRHANDLER, VALID_* and FINUFFT_PLAN for possible warning/error IDs.
* Full documentation is online at http://finufft.readthedocs.io

FINUFFT2D2 2D complex nonuniform FFT of type 2 (uniform to nonuniform).

c = finufft2d2(x,y,isign,eps,f)
c = finufft2d2(x,y,isign,eps,f,opts)

This computes, to relative precision eps, via a fast algorithm:

c[j] = SUM f[k1,k2] exp(+/-i (k1 x[j] + k2 y[j])) for j = 1,..,nj
k1,k2

where sum is over -ms/2 <= k1 <= (ms-1)/2, -mt/2 <= k2 <= (mt-1)/2,

Inputs:
x,y real-valued coordinates of nonuniform targets in the plane,

each a vector of length nj
f complex Fourier coefficient matrix, whose size determines (ms,mt).

(Mode ordering given by opts.modeord, in each dimension.)
If a 3D array, 3rd dimension sets ntrans, and each of ntrans
matrices is transformed with the same nonuniform targets.

isign if >=0, uses + sign in exponential, otherwise - sign.
eps relative precision requested (generally between 1e-15 and 1e-1)
opts optional struct with optional fields controlling the following:
opts.debug: 0 (silent, default), 1 (timing breakdown), 2 (debug info).
opts.spread_debug: spreader: 0 (no text, default), 1 (some), or 2 (lots)
opts.spread_sort: 0 (don't sort NU pts), 1 (do), 2 (auto, default)
opts.spread_kerevalmeth: 0: exp(sqrt()), 1: Horner ppval (faster)
opts.spread_kerpad: (iff kerevalmeth=0) 0: don't pad to mult of 4, 1: do
opts.fftw: FFTW plan mode, 64=FFTW_ESTIMATE (default), 0=FFTW_MEASURE, etc
opts.upsampfac: sigma. 2.0 (default), or 1.25 (low RAM, smaller FFT)
opts.spread_thread: for ntrans>1 only. 0:auto, 1:seq multi, 2:par, etc
opts.maxbatchsize: for ntrans>1 only. max blocking size, or 0 for auto.
opts.nthreads: number of threads, or 0: use all available (default)
opts.modeord: 0 (CMCL increasing mode ordering, default), 1 (FFT ordering)
opts.chkbnds: [DEPRECATED] has no effect

Outputs:
c complex column vector of nj answers at targets, or,

if ntrans>1, matrix of size (nj,ntrans).

Notes:
* The vectorized (many vector) interface, ie ntrans>1, can be much faster
than repeated calls with the same nonuniform points. Note that here the I/O
data ordering is stacked rather than interleaved. See ../docs/matlab.rst

* The class of input x (double vs single) controls whether the double or
single precision library are called; precisions of all data should match.

* For more details about the opts fields, see ../docs/opts.rst
* See ERRHANDLER, VALID_* and FINUFFT_PLAN for possible warning/error IDs.
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* Full documentation is online at http://finufft.readthedocs.io

FINUFFT2D3 2D complex nonuniform FFT of type 3 (nonuniform to nonuniform).

f = finufft2d3(x,y,c,isign,eps,s,t)
f = finufft2d3(x,y,c,isign,eps,s,t,opts)

This computes, to relative precision eps, via a fast algorithm:

nj
f[k] = SUM c[j] exp(+-i (s[k] x[j] + t[k] y[j])), for k = 1, ..., nk

j=1
Inputs:
x,y coordinates of nonuniform sources in R^2, each a length-nj vector.
c length-nj complex vector of source strengths. If numel(c)>nj,

expects a stack of vectors (eg, a nj*ntrans matrix) each of which is
transformed with the same source and target locations.

isign if >=0, uses + sign in exponential, otherwise - sign.
eps relative precision requested (generally between 1e-15 and 1e-1)
s,t frequency coordinates of nonuniform targets in R^2,

each a length-nk vector.
opts optional struct with optional fields controlling the following:
opts.debug: 0 (silent, default), 1 (timing breakdown), 2 (debug info).
opts.spread_debug: spreader: 0 (no text, default), 1 (some), or 2 (lots)
opts.spread_sort: 0 (don't sort NU pts), 1 (do), 2 (auto, default)
opts.spread_kerevalmeth: 0: exp(sqrt()), 1: Horner ppval (faster)
opts.spread_kerpad: (iff kerevalmeth=0) 0: don't pad to mult of 4, 1: do
opts.fftw: FFTW plan mode, 64=FFTW_ESTIMATE (default), 0=FFTW_MEASURE, etc
opts.upsampfac: sigma. 2.0 (default), or 1.25 (low RAM, smaller FFT)
opts.spread_thread: for ntrans>1 only. 0:auto, 1:seq multi, 2:par, etc
opts.maxbatchsize: for ntrans>1 only. max blocking size, or 0 for auto.
opts.nthreads: number of threads, or 0: use all available (default)

Outputs:
f length-nk complex vector of values at targets, or, if ntrans>1,

a matrix of size (nk,ntrans)

Notes:
* The vectorized (many vector) interface, ie ntrans>1, can be much faster
than repeated calls with the same nonuniform points. Note that here the I/O
data ordering is stacked rather than interleaved. See ../docs/matlab.rst

* The class of input x (double vs single) controls whether the double or
single precision library are called; precisions of all data should match.

* For more details about the opts fields, see ../docs/opts.rst
* See ERRHANDLER, VALID_* and FINUFFT_PLAN for possible warning/error IDs.
* Full documentation is online at http://finufft.readthedocs.io

FINUFFT3D1 3D complex nonuniform FFT of type 1 (nonuniform to uniform).

f = finufft3d1(x,y,z,c,isign,eps,ms,mt,mu)
f = finufft3d1(x,y,z,c,isign,eps,ms,mt,mu,opts)

(continues on next page)
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This computes, to relative precision eps, via a fast algorithm:

nj
f[k1,k2,k3] = SUM c[j] exp(+-i (k1 x[j] + k2 y[j] + k3 z[j]))

j=1

for -ms/2 <= k1 <= (ms-1)/2, -mt/2 <= k2 <= (mt-1)/2,
-mu/2 <= k3 <= (mu-1)/2.

Inputs:
x,y,z real-valued coordinates of nonuniform sources,

each a length-nj vector
c length-nj complex vector of source strengths. If numel(c)>nj,

expects a stack of vectors (eg, a nj*ntrans matrix) each of which is
transformed with the same source locations.

isign if >=0, uses + sign in exponential, otherwise - sign.
eps relative precision requested (generally between 1e-15 and 1e-1)
ms,mt,mu number of Fourier modes requested in x,y and z; each may be

even or odd.
In either case the mode range is integers lying in [-m/2, (m-1)/2]

opts optional struct with optional fields controlling the following:
opts.debug: 0 (silent, default), 1 (timing breakdown), 2 (debug info).
opts.spread_debug: spreader: 0 (no text, default), 1 (some), or 2 (lots)
opts.spread_sort: 0 (don't sort NU pts), 1 (do), 2 (auto, default)
opts.spread_kerevalmeth: 0: exp(sqrt()), 1: Horner ppval (faster)
opts.spread_kerpad: (iff kerevalmeth=0) 0: don't pad to mult of 4, 1: do
opts.fftw: FFTW plan mode, 64=FFTW_ESTIMATE (default), 0=FFTW_MEASURE, etc
opts.upsampfac: sigma. 2.0 (default), or 1.25 (low RAM, smaller FFT)
opts.spread_thread: for ntrans>1 only. 0:auto, 1:seq multi, 2:par, etc
opts.maxbatchsize: for ntrans>1 only. max blocking size, or 0 for auto.
opts.nthreads: number of threads, or 0: use all available (default)
opts.modeord: 0 (CMCL increasing mode ordering, default), 1 (FFT ordering)
opts.chkbnds: [DEPRECATED] has no effect

Outputs:
f size (ms,mt,mu) complex array of Fourier coefficients

(ordering given by opts.modeord in each dimension; ms fastest, mu
slowest), or, if ntrans>1, a 4D array of size (ms,mt,mu,ntrans).

Notes:
* The vectorized (many vector) interface, ie ntrans>1, can be much faster
than repeated calls with the same nonuniform points. Note that here the I/O
data ordering is stacked rather than interleaved. See ../docs/matlab.rst

* The class of input x (double vs single) controls whether the double or
single precision library are called; precisions of all data should match.

* For more details about the opts fields, see ../docs/opts.rst
* See ERRHANDLER, VALID_* and FINUFFT_PLAN for possible warning/error IDs.
* Full documentation is online at http://finufft.readthedocs.io

FINUFFT3D2 3D complex nonuniform FFT of type 2 (uniform to nonuniform).

c = finufft3d2(x,y,z,isign,eps,f)
c = finufft3d2(x,y,z,isign,eps,f,opts)
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This computes, to relative precision eps, via a fast algorithm:

c[j] = SUM f[k1,k2,k3] exp(+/-i (k1 x[j] + k2 y[j] + k3 z[j]))
k1,k2,k3

for j = 1,..,nj
where sum is over -ms/2 <= k1 <= (ms-1)/2, -mt/2 <= k2 <= (mt-1)/2,

-mu/2 <= k3 <= (mu-1)/2.

Inputs:
x,y,z real-valued coordinates of nonuniform targets,

each a vector of length nj
f complex Fourier coefficient array, whose size sets (ms,mt,mu).

(Mode ordering given by opts.modeord, in each dimension.)
If a 4D array, 4th dimension sets ntrans, and each of ntrans
3D arrays is transformed with the same nonuniform targets.

isign if >=0, uses + sign in exponential, otherwise - sign.
eps relative precision requested (generally between 1e-15 and 1e-1)
opts optional struct with optional fields controlling the following:
opts.debug: 0 (silent, default), 1 (timing breakdown), 2 (debug info).
opts.spread_debug: spreader: 0 (no text, default), 1 (some), or 2 (lots)
opts.spread_sort: 0 (don't sort NU pts), 1 (do), 2 (auto, default)
opts.spread_kerevalmeth: 0: exp(sqrt()), 1: Horner ppval (faster)
opts.spread_kerpad: (iff kerevalmeth=0) 0: don't pad to mult of 4, 1: do
opts.fftw: FFTW plan mode, 64=FFTW_ESTIMATE (default), 0=FFTW_MEASURE, etc
opts.upsampfac: sigma. 2.0 (default), or 1.25 (low RAM, smaller FFT)
opts.spread_thread: for ntrans>1 only. 0:auto, 1:seq multi, 2:par, etc
opts.maxbatchsize: for ntrans>1 only. max blocking size, or 0 for auto.
opts.nthreads: number of threads, or 0: use all available (default)
opts.modeord: 0 (CMCL increasing mode ordering, default), 1 (FFT ordering)
opts.chkbnds: [DEPRECATED] has no effect

Outputs:
c complex column vector of nj answers at targets, or,

if ntrans>1, matrix of size (nj,ntrans).

Notes:
* The vectorized (many vector) interface, ie ntrans>1, can be much faster
than repeated calls with the same nonuniform points. Note that here the I/O
data ordering is stacked rather than interleaved. See ../docs/matlab.rst

* The class of input x (double vs single) controls whether the double or
single precision library are called; precisions of all data should match.

* For more details about the opts fields, see ../docs/opts.rst
* See ERRHANDLER, VALID_* and FINUFFT_PLAN for possible warning/error IDs.
* Full documentation is online at http://finufft.readthedocs.io

FINUFFT3D3 3D complex nonuniform FFT of type 3 (nonuniform to nonuniform).

f = finufft3d3(x,y,z,c,isign,eps,s,t,u)
f = finufft3d3(x,y,z,c,isign,eps,s,t,u,opts)

This computes, to relative precision eps, via a fast algorithm:
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nj
f[k] = SUM c[j] exp(+-i (s[k] x[j] + t[k] y[j] + u[k] z[j])),

j=1
for k = 1, ..., nk

Inputs:
x,y,z coordinates of nonuniform sources in R^3, each a length-nj vector.
c length-nj complex vector of source strengths. If numel(c)>nj,

expects a stack of vectors (eg, a nj*ntrans matrix) each of which is
transformed with the same source and target locations.

isign if >=0, uses + sign in exponential, otherwise - sign.
eps relative precision requested (generally between 1e-15 and 1e-1)
s,t,u frequency coordinates of nonuniform targets in R^3,

each a length-nk vector.
opts optional struct with optional fields controlling the following:
opts.debug: 0 (silent, default), 1 (timing breakdown), 2 (debug info).
opts.spread_debug: spreader: 0 (no text, default), 1 (some), or 2 (lots)
opts.spread_sort: 0 (don't sort NU pts), 1 (do), 2 (auto, default)
opts.spread_kerevalmeth: 0: exp(sqrt()), 1: Horner ppval (faster)
opts.spread_kerpad: (iff kerevalmeth=0) 0: don't pad to mult of 4, 1: do
opts.fftw: FFTW plan mode, 64=FFTW_ESTIMATE (default), 0=FFTW_MEASURE, etc
opts.upsampfac: sigma. 2.0 (default), or 1.25 (low RAM, smaller FFT)
opts.spread_thread: for ntrans>1 only. 0:auto, 1:seq multi, 2:par, etc
opts.maxbatchsize: for ntrans>1 only. max blocking size, or 0 for auto.
opts.nthreads: number of threads, or 0: use all available (default)

Outputs:
f length-nk complex vector of values at targets, or, if ntrans>1,

a matrix of size (nk,ntrans)

Notes:
* The vectorized (many vector) interface, ie ntrans>1, can be much faster
than repeated calls with the same nonuniform points. Note that here the I/O
data ordering is stacked rather than interleaved. See ../docs/matlab.rst

* The class of input x (double vs single) controls whether the double or
single precision library are called; precisions of all data should match.

* For more details about the opts fields, see ../docs/opts.rst
* See ERRHANDLER, VALID_* and FINUFFT_PLAN for possible warning/error IDs.
* Full documentation is online at http://finufft.readthedocs.io

FINUFFT_PLAN is a class which wraps the guru interface to FINUFFT.

Full documentation is given in ../finufft-manual.pdf and online at
http://finufft.readthedocs.io
Also see examples in the matlab/examples and matlab/test directories.

PROPERTIES
mwptr - opaque pointer to a C++ finufft_plan object (see MWrap manual),

whose properties cannot be accessed directly
floatprec - either 'double' or 'single', tracks what precision of C++

library is being called
type, dim, n_modes, n_trans, nj, nk - other plan parameters

Note: the user should never alter these plan properties directly! Rather,
the below methods should be used to create, use, and destroy plans.

(continues on next page)
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METHODS
finufft_plan - create guru plan object for one/many general nonuniform FFTs.
setpts - process nonuniform points for general FINUFFT transform(s).
execute - execute single or many-vector FINUFFT transforms in a plan.

General notes:
* use delete(plan) to remove a plan after use.
* See ERRHANDLER, VALID_*, and this code for warning/error IDs.

=========== Detailed description of guru methods ==========================

1) FINUFFT_PLAN create guru plan object for one/many general nonuniform FFTs.

plan = finufft_plan(type, n_modes_or_dim, isign, ntrans, eps)
plan = finufft_plan(type, n_modes_or_dim, isign, ntrans, eps, opts)

Creates a finufft_plan MATLAB object in the guru interface to FINUFFT, of
type 1, 2 or 3, and with given numbers of Fourier modes (unless type 3).

Inputs:
type transform type: 1, 2, or 3
n_modes_or_dim if type is 1 or 2, the number of Fourier modes in each

dimension: [ms] in 1D, [ms mt] in 2D, or [ms mt mu] in 3D.
Its length sets the dimension, which must be 1, 2 or 3.
If type is 3, in contrast, its *value* fixes the dimension

isign if >=0, uses + sign in exponential, otherwise - sign.
eps relative precision requested (generally between 1e-15 and 1e-1)
opts optional struct with optional fields controlling the following:
opts.debug: 0 (silent, default), 1 (timing breakdown), 2 (debug info).
opts.spread_debug: spreader: 0 (no text, default), 1 (some), or 2 (lots)
opts.spread_sort: 0 (don't sort NU pts), 1 (do), 2 (auto, default)
opts.spread_kerevalmeth: 0: exp(sqrt()), 1: Horner ppval (faster)
opts.spread_kerpad: (iff kerevalmeth=0) 0: don't pad to mult of 4, 1: do
opts.fftw: FFTW plan mode, 64=FFTW_ESTIMATE (default), 0=FFTW_MEASURE, etc
opts.upsampfac: sigma. 2.0 (default), or 1.25 (low RAM, smaller FFT)
opts.spread_thread: for ntrans>1 only. 0:auto, 1:seq multi, 2:par, etc
opts.maxbatchsize: for ntrans>1 only. max blocking size, or 0 for auto.
opts.nthreads: number of threads, or 0: use all available (default)
opts.floatprec: library precision to use, 'double' (default) or 'single'.
for type 1 and 2 only, the following opts fields are also relevant:
opts.modeord: 0 (CMCL increasing mode ordering, default), 1 (FFT ordering)
opts.chkbnds: [DEPRECATED] has no effect

Outputs:
plan finufft_plan object (opaque pointer)

Notes:
* For type 1 and 2, this does the FFTW planning and kernel-FT precomputation.
* For type 3, this does very little, since the FFT sizes are not yet known.
* Be default all threads are planned; control how many with opts.nthreads.

(continues on next page)
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* The vectorized (many vector) plan, ie ntrans>1, can be much faster
than repeated calls with the same nonuniform points. Note that here the I/O
data ordering is stacked rather than interleaved. See ../docs/matlab.rst

* For more details about the opts fields, see ../docs/opts.rst

2) SETPTS process nonuniform points for general FINUFFT transform(s).

plan.setpts(xj)
plan.setpts(xj, yj)
plan.setpts(xj, yj, zj)
plan.setpts(xj, [], [], s)
plan.setpts(xj, yj, [], s, t)
plan.setpts(xj, yj, zj, s, t, u)

When plan is a finufft_plan MATLAB object, brings in nonuniform point
coordinates (xj,yj,zj), and additionally in the type 3 case, nonuniform
frequency target points (s,t,u). Empty arrays may be passed in the case of
unused dimensions. For all types, sorting is done to internally store a
reindexing of points, and for type 3 the spreading and FFTs are planned.
The nonuniform points may be used for multiple transforms.

Inputs:
xj vector of x-coords of all nonuniform points
yj empty (if dim<2), or vector of y-coords of all nonuniform points
zj empty (if dim<3), or vector of z-coords of all nonuniform points
s vector of x-coords of all nonuniform frequency targets
t empty (if dim<2), or vector of y-coords of all frequency targets
u empty (if dim<3), or vector of z-coords of all frequency targets

Input/Outputs:
plan finufft_plan object

Notes:
* The values in xj (and if nonempty, yj and zj) are real-valued, and
invariant under translations by multiples of 2pi. For type 1
they are "sources", whereas for type 2 they are "targets".
For type 3 there is no periodicity, and no restrictions other
than the resulting size of the internal fine grids.

* s (and t and u) are only relevant for type 3, and may be omitted otherwise
* The matlab vectors xj,... and s,... should not be changed before calling
future execute calls, because the plan stores only pointers to the
arrays (they are not duplicated internally).

* The precision (double/single) of all inputs must match that chosen at the
plan stage using opts.floatprec, otherwise an error is raised.

3) EXECUTE execute single or many-vector FINUFFT transforms in a plan.

result = plan.execute(data_in);

For plan a previously created finufft_plan object also containing all
needed nonuniform point coordinates, do a single (or if ntrans>1 in the

(continues on next page)
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plan stage, multiple) NUFFT transform(s), with the strengths or Fourier
coefficient inputs vector(s) from data_in. The result of the transform(s)
is returned as a (possibly multidimensional) array.

Inputs:
plan finufft_plan object
data_in strengths (types 1 or 3) or Fourier coefficients (type 2)

vector, matrix, or array of appropriate size. For type 1 and 3,
this is either a length-M vector (where M is the length of xj),
or an (M,ntrans) matrix when ntrans>1. For type 2, in 1D this is
length-ms, in 2D size (ms,mt), or in 3D size (ms,mt,mu), or
each of these with an extra last dimension ntrans if ntrans>1.

Outputs:
result vector of output strengths at targets (types 2 or 3), or array

of Fourier coefficients (type 1), or, if ntrans>1, a stack of
such vectors or arrays, of appropriate size.
Specifically, if ntrans=1, for type 1, in 1D
this is a length-ms column vector, in 2D a matrix of size
(ms,mt), or in 3D an array of size (ms,mt,mu); for types 2 and 3
it is a column vector of length M (the length of xj in type 2),
or nk (the length of s in type 3). If ntrans>1 its is a stack
of such objects, ie, it has an extra last dimension ntrans.

Notes:
* The precision (double/single) of all inputs must match that chosen at the
plan stage using opts.floatprec, otherwise an error is raised.

4) To deallocate (delete) a nonuniform FFT plan, use delete(plan)

This deallocates all stored FFTW plans, nonuniform point sorting arrays,
kernel Fourier transforms arrays, etc.
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PYTHON INTERFACE

13.1 Quick-start examples

The easiest way to install is to run:

pip install finufft

which downloads and installs the latest precompiled binaries from PyPI. If you have pytest installed, you can test it
with:

pytest python/finufft/test

or, without having pytest you can run the older-style eyeball check:

python3 python/finufft/test/run_accuracy_tests.py

which should report errors around 1e-6 and throughputs around 1-10 million points/sec. (Please note that the
finufftpy package is obsolete.) If you would like to compile from source, see the Python installation instructions.

Once installed, to calculate a 1D type 1 transform from nonuniform to uniform points, we import finufft, specify the
nonuniform points x, their strengths c, and call nufft1d1:

import numpy as np
import finufft

# number of nonuniform points
M = 100000

# the nonuniform points
x = 2 * np.pi * np.random.uniform(size=M)

# their complex strengths
c = (np.random.standard_normal(size=M)

+ 1J * np.random.standard_normal(size=M))

# desired number of Fourier modes (uniform outputs)
N = 200000

# calculate the transform
f = finufft.nufft1d1(x, c, N)

The input here is a set of complex strengths c, which are used to approximate (1) in Mathematical definitions of trans-
forms. That approximation is stored in f, which is indexed from -N // 2 up to N // 2 - 1 (since N is even; if odd it
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would be -(N - 1) // 2 up to (N - 1) // 2). The approximation is accurate to a tolerance of 1e-6, which is the
default tolerance of nufft1d1. It can be modified using the eps argument:

# calculate the transform to higher accuracy
f = finufft.nufft1d1(x, c, N, eps=1e-12)

Note, however, that a lower tolerance (that is, a higher accuracy) results in a slower transform. See python/finufft/
examples/simple1d1.py for the demo code that includes a basic math test (useful to check both the math and the
indexing).

For higher dimensions, we would specify point locations in more than one dimension:

# 2D nonuniform points (x,y coords)
x = 2 * np.pi * np.random.uniform(size=M)
y = 2 * np.pi * np.random.uniform(size=M)

# desired number of Fourier modes (in x, y directions respectively)
N1 = 1000
N2 = 2000

# the 2D transform outputs f array of shape (N1, N2)
f = finufft.nufft2d1(x, y, c, (N1, N2))

See python/finufft/examples/simple2d1.py for the demo code that includes a basic math test (useful to check
both the math and the indexing).

We can also go the other way, from uniform to non-uniform points, using a type 2 transform:

# input Fourier coefficients
f = (np.random.standard_normal(size=(N1, N2))

+ 1J * np.random.standard_normal(size=(N1, N2)))

# calculate the 2D type 2 transform
c = finufft.nufft2d2(x, y, f)

Now the output is a complex vector of length M approximating (2) in Mathematical definitions of transforms, that is
the adjoint (but not inverse) of (1). (Note that the default sign in the exponential is negative for type 2 in the Python
interface.)

In addition to tolerance eps, we can adjust other options for the transform. These are listed in Options parameters and
are specified as keyword arguments in the Python interface. For example, to change the mode ordering to FFT style
(that is, in each dimension Ni = N1 or N2, the indices go from 0 to Ni // 2 - 1, then from -Ni // 2 to -1, since
each Ni is even), we call

f = finufft.nufft2d1(x, y, c, (N1, N2), modeord=1)

We can also specify a preallocated output array using the out keyword argument. This would be done by

# allocate the output array
f = np.empty((N1, N2), dtype='complex128')

# calculate the transform
finufft.nufft2d1(x, y, c, out=f)

In this case, we do not need to specify the output shape since it can be inferred from f.
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Note that the above functions are all vectorized, which means that they can take multiple inputs stacked along the first
dimension (that is, in row-major order) and process them simultaneously. This can bring significant speedups for small
inputs by avoiding multiple short calls to FINUFFT. For the 2D type 1 vectorized interface, we would call

# number of transforms
K = 4

# generate K stacked coefficient arrays
c = (np.random.standard_normal(size=(K, M))

+ 1J * np.random.standard_normal(size=(K, M)))

# calculate the K transforms simultaneously (K is inferred from c.shape)
f = finufft.nufft2d1(x, y, c, (N1, N2))

The output array fwould then have the shape (K, N1, N2). See the complete demo in python/finufft/examples/
many2d1.py.

More fine-grained control can be obtained using the plan (or guru) interface. Instead of preparing the transform, setting
the nonuniform points, and executing the transform all at once, these steps are seperated into different function calls.
This can speed up calculations if multiple transforms are executed for the same grid size, since the same FFTW plan
can be reused between calls. Additionally, if the same nonuniform points are reused between calls, we gain an extra
speedup since the points only have to be sorted once. To perform the call above using the plan interface, we would
write

# specify type 1 transform
nufft_type = 1

# instantiate the plan (note ntrans must be set here)
plan = finufft.Plan(nufft_type, (N1, N2), n_trans=K)

# set the nonuniform points
plan.setpts(x, y)

# execute the plan
f = plan.execute(c)

See the complete demo in python/finufft/examples/guru2d1.py. All interfaces support both single and double
precision, but for the plan, this must be specified at initialization time using the dtype argument

# convert input data to single precision
x = x.astype('float32')
y = y.astype('float32')
c = c.astype('complex64')

# instantiate the plan and set the points
plan = finufft.Plan(nufft_type, (N1, N2), n_trans=K, dtype='complex64')
plan.setpts(x, y)

# execute the plan, giving single-precision output
f = plan.execute(c)

See the complete demo, with math test, in python/finufft/examples/guru2d1f.py.
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13.2 Full documentation

The Python interface to FINUFFT is divided into two parts: the simple interface (through the nufft* functions) and
the more advanced plan interface (through the Plan class). The former allows the user to perform an NUFFT in a
single call while the latter allows for more efficient reuse of resources when the same NUFFT is applied several times
to different data by saving FFTW plans, sorting the nonuniform points, and so on.

finufft.nufft1d1(x, c, n_modes=None, out=None, eps=1e-06, isign=1, **kwargs)
1D type-1 (nonuniform to uniform) complex NUFFT

M-1
f[k1] = SUM c[j] exp(+/-i k1 x(j))

j=0

for -N1/2 <= k1 <= (N1-1)/2

Args:

x(float[M]): nonuniform points, in [-pi, pi), values outside will be folded

c (complex[M] or complex[n_tr, M]): source strengths. n_modes (integer or integer tuple of length
1, optional): number of

uniform Fourier modes requested (N1, ). May be even or odd; in either case, modes k1
are integers satisfying -N1/2 <= k1 <= (N1-1)/2. Must be specified if out is not given.

out (complex[N1] or complex[n_tr, N1], optional): output array
for Fourier mode values. If n_modes is specifed, the shape must match, otherwise n_modes
is inferred from out.

eps (float, optional): precision requested (>1e-16). isign (int, optional): if non-negative, uses
positive sign in

exponential, otherwise negative sign.

**kwargs (optional): for more options, see Options parameters.

Note: The output is written into the out array if supplied.

Returns:
complex[N1] or complex[n_tr, N1]: The resulting array.

Example:

import numpy as np
import finufft

# number of nonuniform points
M = 100

# the nonuniform points

x = 2 * np.pi * np.random.uniform(size=M)
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# their complex strengths c = (np.random.standard_normal(size=M)

• 1J * np.random.standard_normal(size=M))

# desired number of Fourier modes N1 = 50

# calculate the type-1 NUFFT f = finufft.nufft1d1(x, c, (N1, ))

See also python/finufft/examples/simple1d1.py, python/finufft/examples/
simpleopts1d1.py.

finufft.nufft1d2(x, f , out=None, eps=1e-06, isign=-1, **kwargs)
1D type-2 (uniform to nonuniform) complex NUFFT

c[j] = SUM f[k1] exp(+/-i k1 x(j))
k1

for j = 0, ..., M-1, where the sum is over -N1/2 <= k1 <= (N1-1)/2

Args:

x(float[M]): nonuniform points, in [-pi, pi), values outside will be folded

f (complex[N1] or complex[n_tr, N1]): Fourier mode
coefficients, where N1 may be even or odd. In either case the mode indices k1 satisfy -N1/2
<= k1 <= (N1-1)/2.

out (complex[M] or complex[n_tr, M], optional): output array
at targets.

eps (float, optional): precision requested (>1e-16). isign (int, optional): if non-negative, uses
positive sign in

exponential, otherwise negative sign.

**kwargs (optional): for more options, see Options parameters.

Note: The output is written into the out array if supplied.

Returns:
complex[M] or complex[n_tr, M]: The resulting array.

Example:

import numpy as np
import finufft

# number of nonuniform points
M = 100

# the nonuniform points

x = 2 * np.pi * np.random.uniform(size=M)

# number of Fourier modes N1 = 50

# the Fourier mode coefficients f = (np.random.standard_normal(size=(N1, ))

• 1J * np.random.standard_normal(size=(N1, )))
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# calculate the type-2 NUFFT c = finufft.nufft1d2(x, f)

See also python/finufft/test/accuracy_speed_tests.py.

finufft.nufft1d3(x, c, s, out=None, eps=1e-06, isign=1, **kwargs)
1D type-3 (nonuniform to nonuniform) complex NUFFT

M-1
f[k] = SUM c[j] exp(+/-i s[k] x[j]),

j=0

for k = 0, ..., N-1

Args:

x(float[M]): nonuniform points, valid in [-pi, pi), values outside will be
folded c (complex[M] or complex[n_tr, M]): source strengths.

s(float[N]): nonuniform target points.

out (complex[N] or complex[n_tr, N]): output values at target
frequencies.

eps (float, optional): precision requested (>1e-16). isign (int, optional): if non-negative, uses
positive sign in

exponential, otherwise negative sign.

**kwargs (optional): for more options, see Options parameters.

Note: The output is written into the out array if supplied.

Returns:
complex[M] or complex[n_tr, M]: The resulting array.

Example:

import numpy as np
import finufft

# number of source points
M = 100

# number of target points
N = 200

# the source points

x = 2 * np.pi * np.random.uniform(size=M)

# the target points

s = 2 * np.pi * np.random.uniform(size=N)

# their complex strengths c = (np.random.standard_normal(size=M)

• 1J * np.random.standard_normal(size=M))
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# calcuate the type-3 NUFFT f = finufft.nufft1d3(x, c, s)

See also python/finufft/test/accuracy_speed_tests.py.

finufft.nufft2d1(x, y, c, n_modes=None, out=None, eps=1e-06, isign=1, **kwargs)
2D type-1 (nonuniform to uniform) complex NUFFT

M-1
f[k1, k2] = SUM c[j] exp(+/-i (k1 x(j) + k2 y(j)))

j=0

for -N1/2 <= k1 <= (N1-1)/2, -N2/2 <= k2 <= (N2-1)/2

Args:

x(float[M]): nonuniform points, in [-pi, pi), values outside will be folded y(float[M]): nonuniform points, in [-pi,
pi), values outside will be folded

c (complex[M] or complex[n_tr, M]): source strengths. n_modes (integer or integer tuple of
length 2, optional): number of

uniform Fourier modes requested (N1, N2). May be even or odd; in either case,
modes k1, k2 are integers satisfying -N1/2 <= k1 <= (N1-1)/2, -N2/2 <= k2 <=
(N2-1)/2. Must be specified if out is not given.

out (complex[N1, N2] or complex[n_tr, N1, N2], optional): output
array for Fourier mode values. If n_modes is specifed, the shape must match, otherwise
n_modes is inferred from out.

eps (float, optional): precision requested (>1e-16). isign (int, optional): if non-negative,
uses positive sign in

exponential, otherwise negative sign.

**kwargs (optional): for more options, see Options parameters.

Note: The output is written into the out array if supplied.

Returns:
complex[N1, N2] or complex[n_tr, N1, N2]: The resulting array.

Example:

import numpy as np
import finufft

# number of nonuniform points
M = 100

# the nonuniform points

x = 2 * np.pi * np.random.uniform(size=M) y = 2 * np.pi * np.random.uniform(size=M)

# their complex strengths c = (np.random.standard_normal(size=M)

• 1J * np.random.standard_normal(size=M))
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# desired number of Fourier modes N1, N2 = 50, 75

# calculate the type-1 NUFFT f = finufft.nufft2d1(x, y, c, (N1, N2))

See also python/finufft/examples/simple2d1.py, python/finufft/examples/
many2d1.py.

finufft.nufft2d2(x, y, f , out=None, eps=1e-06, isign=-1, **kwargs)
2D type-2 (uniform to nonuniform) complex NUFFT

c[j] = SUM f[k1, k2] exp(+/-i (k1 x(j) + k2 y(j)))
k1, k2

for j = 0, ..., M-1, where the sum is over -N1/2 <= k1 <= (N1-1)/2,
-N2/2 <= k2 <= (N2-1)/2

Args:

x(float[M]): nonuniform points, in [-pi, pi), values outside will be folded y(float[M]): nonuniform points, in [-pi,
pi), values outside will be folded

f (complex[N1, N2] or complex[n_tr, N1, N2]): Fourier mode
coefficients, where N1, N2 may be even or odd. In either case the mode indices k1, k2
satisfy -N1/2 <= k1 <= (N1-1)/2, -N2/2 <= k2 <= (N2-1)/2.

out (complex[M] or complex[n_tr, M], optional): output array
at targets.

eps (float, optional): precision requested (>1e-16). isign (int, optional): if non-negative,
uses positive sign in

exponential, otherwise negative sign.

**kwargs (optional): for more options, see Options parameters.

Note: The output is written into the out array if supplied.

Returns:
complex[M] or complex[n_tr, M]: The resulting array.

Example:

import numpy as np
import finufft

# number of nonuniform points
M = 100

# the nonuniform points

x = 2 * np.pi * np.random.uniform(size=M) y = 2 * np.pi * np.random.uniform(size=M)

# number of Fourier modes N1, N2 = 50, 75

# the Fourier mode coefficients f = (np.random.standard_normal(size=(N1, N2))

• 1J * np.random.standard_normal(size=(N1, N2)))
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# calculate the type-2 NUFFT c = finufft.nufft2d2(x, y, f)

See also python/finufft/test/accuracy_speed_tests.py.

finufft.nufft2d3(x, y, c, s, t, out=None, eps=1e-06, isign=1, **kwargs)
2D type-3 (nonuniform to nonuniform) complex NUFFT

M-1
f[k] = SUM c[j] exp(+/-i (s[k] x[j] + t[k] y[j])),

j=0

for k = 0, ..., N-1

Args:

x(float[M]): nonuniform points, valid in [-pi, pi), values outside will be
folded

y(float[M]): nonuniform points, valid in [-pi, pi), values outside will be
folded c (complex[M] or complex[n_tr, M]): source strengths.

s(float[N]): nonuniform target points. t(float[N]): nonuniform target points.

out (complex[N] or complex[n_tr, N]): output values at target
frequencies.

eps (float, optional): precision requested (>1e-16). isign (int, optional): if non-negative,
uses positive sign in

exponential, otherwise negative sign.

**kwargs (optional): for more options, see Options parameters.

Note: The output is written into the out array if supplied.

Returns:
complex[M] or complex[n_tr, M]: The resulting array.

Example:

import numpy as np
import finufft

# number of source points
M = 100

# number of target points
N = 200

# the source points

x = 2 * np.pi * np.random.uniform(size=M) y = 2 * np.pi * np.random.uniform(size=M)

# the target points

s = 2 * np.pi * np.random.uniform(size=N) t = 2 * np.pi * np.random.uniform(size=N)

# their complex strengths c = (np.random.standard_normal(size=M)
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• 1J * np.random.standard_normal(size=M))

# calcuate the type-3 NUFFT f = finufft.nufft2d3(x, y, c, s, t)

See also python/finufft/test/accuracy_speed_tests.py.

finufft.nufft3d1(x, y, z, c, n_modes=None, out=None, eps=1e-06, isign=1, **kwargs)
3D type-1 (nonuniform to uniform) complex NUFFT

M-1
f[k1, k2, k3] = SUM c[j] exp(+/-i (k1 x(j) + k2 y(j) + k3 z(j)))

j=0

for -N1/2 <= k1 <= (N1-1)/2, -N2/2 <= k2 <= (N2-1)/2, -N3/2 <= k3 <=
(N3-1)/2

Args:

x(float[M]): nonuniform points, in [-pi, pi), values outside will be folded y(float[M]): nonuniform points, in [-pi,
pi), values outside will be folded z(float[M]): nonuniform points, in [-pi, pi), values outside will be folded

c (complex[M] or complex[n_tr, M]): source strengths. n_modes (integer or integer tuple of
length 3, optional): number of

uniform Fourier modes requested (N1, N2, N3). May be even or odd; in either case,
modes k1, k2, k3 are integers satisfying -N1/2 <= k1 <= (N1-1)/2, -N2/2 <= k2 <=
(N2-1)/2, -N3/2 <= k3 <= (N3-1)/2. Must be specified if out is not given.

out (complex[N1, N2, N3] or complex[n_tr, N1, N2, N3], optional):
output array for Fourier mode values. If n_modes is specifed, the shape must match,
otherwise n_modes is inferred from out.

eps (float, optional): precision requested (>1e-16). isign (int, optional): if non-negative,
uses positive sign in

exponential, otherwise negative sign.

**kwargs (optional): for more options, see Options parameters.

Note: The output is written into the out array if supplied.

Returns:
complex[N1, N2, N3] or complex[n_tr, N1, N2, N3]: The resulting array.

Example:

import numpy as np
import finufft

# number of nonuniform points
M = 100

# the nonuniform points

x = 2 * np.pi * np.random.uniform(size=M) y = 2 * np.pi * np.random.uniform(size=M) z = 2 * np.pi *
np.random.uniform(size=M)
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# their complex strengths c = (np.random.standard_normal(size=M)

• 1J * np.random.standard_normal(size=M))

# desired number of Fourier modes N1, N2, N3 = 50, 75, 100

# calculate the type-1 NUFFT f = finufft.nufft3d1(x, y, z, c, (N1, N2, N3))

See also python/finufft/test/accuracy_speed_tests.py.

finufft.nufft3d2(x, y, z, f , out=None, eps=1e-06, isign=-1, **kwargs)
3D type-2 (uniform to nonuniform) complex NUFFT

c[j] = SUM f[k1, k2, k3] exp(+/-i (k1 x(j) + k2 y(j) + k3 z(j)))
k1, k2, k3

for j = 0, ..., M-1, where the sum is over -N1/2 <= k1 <= (N1-1)/2,
-N2/2 <= k2 <= (N2-1)/2, -N3/2 <= k3 <= (N3-1)/2

Args:

x(float[M]): nonuniform points, in [-pi, pi), values outside will be folded y(float[M]): nonuniform points, in [-pi,
pi), values outside will be folded z(float[M]): nonuniform points, in [-pi, pi), values outside will be folded

f (complex[N1, N2, N3] or complex[n_tr, N1, N2, N3]): Fourier mode
coefficients, where N1, N2, N3 may be even or odd. In either case the mode indices
k1, k2, k3 satisfy -N1/2 <= k1 <= (N1-1)/2, -N2/2 <= k2 <= (N2-1)/2, -N3/2 <= k3 <=
(N3-1)/2.

out (complex[M] or complex[n_tr, M], optional): output array
at targets.

eps (float, optional): precision requested (>1e-16). isign (int, optional): if non-negative,
uses positive sign in

exponential, otherwise negative sign.

**kwargs (optional): for more options, see Options parameters.

Note: The output is written into the out array if supplied.

Returns:
complex[M] or complex[n_tr, M]: The resulting array.

Example:

import numpy as np
import finufft

# number of nonuniform points
M = 100

# the nonuniform points

x = 2 * np.pi * np.random.uniform(size=M) y = 2 * np.pi * np.random.uniform(size=M) z = 2 * np.pi *
np.random.uniform(size=M)
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# number of Fourier modes N1, N2, N3 = 50, 75, 100

# the Fourier mode coefficients f = (np.random.standard_normal(size=(N1, N2, N3))

• 1J * np.random.standard_normal(size=(N1, N2, N3)))

# calculate the type-2 NUFFT c = finufft.nufft3d2(x, y, z, f)

See also python/finufft/test/accuracy_speed_tests.py.

finufft.nufft3d3(x, y, z, c, s, t, u, out=None, eps=1e-06, isign=1, **kwargs)
3D type-3 (nonuniform to nonuniform) complex NUFFT

M-1
f[k] = SUM c[j] exp(+/-i (s[k] x[j] + t[k] y[j] + u[k] z[j])),

j=0

for k = 0, ..., N-1

Args:

x(float[M]): nonuniform points, valid in [-pi, pi), values outside will be
folded

y(float[M]): nonuniform points, valid in [-pi, pi), values outside will be
folded

z(float[M]): nonuniform points, valid in [-pi, pi), values outside will be
folded c (complex[M] or complex[n_tr, M]): source strengths.

s(float[N]): nonuniform target points. t(float[N]): nonuniform target points. u(float[N]): nonuniform target
points.

out (complex[N] or complex[n_tr, N]): output values at target
frequencies.

eps (float, optional): precision requested (>1e-16). isign (int, optional): if non-negative,
uses positive sign in

exponential, otherwise negative sign.

**kwargs (optional): for more options, see Options parameters.

Note: The output is written into the out array if supplied.

Returns:
complex[M] or complex[n_tr, M]: The resulting array.

Example:

import numpy as np
import finufft

# number of source points
M = 100

# number of target points
(continues on next page)
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N = 200

# the source points

x = 2 * np.pi * np.random.uniform(size=M) y = 2 * np.pi * np.random.uniform(size=M) z = 2 * np.pi *
np.random.uniform(size=M)

# the target points

s = 2 * np.pi * np.random.uniform(size=N) t = 2 * np.pi * np.random.uniform(size=N) u = 2 * np.pi *
np.random.uniform(size=N)

# their complex strengths c = (np.random.standard_normal(size=M)

• 1J * np.random.standard_normal(size=M))

# calcuate the type-3 NUFFT f = finufft.nufft3d3(x, y, z, c, s, t, u)

See also python/finufft/test/accuracy_speed_tests.py.

class finufft.Plan(nufft_type, n_modes_or_dim, n_trans=1, eps=1e-06, isign=None, dtype='complex128',
**kwargs)

A non-uniform fast Fourier transform (NUFFT) plan

The Plan class lets the user exercise more fine-grained control over the execution of an NUFFT. First, the plan
is created with a certain set of parameters (type, mode configuration, tolerance, sign, number of simultaneous
transforms, and so on). Then the nonuniform points are set (source or target depending on the type). Finally, the
plan is executed on some data, yielding the desired output.

In the simple interface, all these steps are executed in a single call to the nufft* functions. The benefit of separat-
ing plan creation from execution is that it allows for plan reuse when certain parameters (like mode configuration)
or nonuniform points remain the same between different NUFFT calls. This becomes especially important for
small inputs, where execution time may be dominated by initialization steps such as allocating and FFTW plan
and sorting the nonuniform points.

Example:

import numpy as np
import finufft

# set up parameters
n_modes = (1000, 2000)
n_pts = 100000
nufft_type = 1
n_trans = 4

# generate nonuniform points
x = 2 * np.pi * np.random.uniform(size=n_pts)
y = 2 * np.pi * np.random.uniform(size=n_pts)

# generate source strengths
c = (np.random.standard_normal(size=(n_trans, n_pts))

+ 1J * np.random.standard_normal(size=(n_trans, n_pts)))

# initialize the plan
plan = finufft.Plan(nufft_type, n_modes, n_trans)

(continues on next page)
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# set the nonuniform points
plan.setpts(x, y)

# execute the plan
f = plan.execute(c)

Also see python/finufft/examples/guru1d1.py and python/finufft/examples/guru2d1.py.

Parameters

• nufft_type (int) – type of NUFFT (1, 2, or 3).

• n_modes_or_dim (int or tuple of ints) – for type 1 and type 2, this should be a tuple
specifying the number of modes in each dimension (for example, (50, 100)), otherwise,
for type 3, this should be the number of dimensions (between 1 and 3).

• n_trans (int, optional) – number of transforms to compute simultaneously.

• eps (float, optional) – precision requested (>1e-16).

• isign (int, optional) – if +1, uses the positive sign exponential, otherwise the negative
sign exponential; defaults to +1 for types 1 and 3 and to -1 for type 2.

• dtype (string, optional) – the precision of the transform, 'complex64' or
'complex128'.

• **kwargs (optional) – for more options, see Options parameters.

setpts(x=None, y=None, z=None, s=None, t=None, u=None)
Set the nonuniform points

For type 1, this sets the coordinates of the M nonuniform source points, for type 2, it sets the coordinates of
the M target points, and for type 3 it sets both the M source points and the N target points.

The dimension of the plan determines the number of arguments supplied. For example, if dim == 2, we
provide x and y (as well as s and t for a type-3 transform).

Parameters

• x (float[M]) – first coordinate of the nonuniform points (source for type 1 and 3, target
for type 2).

• y (float[M], optional) – second coordinate of the nonuniform points (source for type
1 and 3, target for type 2).

• z (float[M], optional) – third coordinate of the nonuniform points (source for type 1
and 3, target for type 2).

• s (float[N], optional) – first coordinate of the nonuniform points (target for type 3).

• t (float[N], optional) – second coordinate of the nonuniform points (target for type
3).

• u (float[N], optional) – third coordinate of the nonuniform points (target for type 3).

execute(data, out=None)
Execute the plan

Performs the NUFFT specified at plan instantiation with the points set by setpts. For type-1 and type-3
transforms, the input is a set of source strengths, while for a type-2 transform, it consists of an array of size
n_modes. If n_trans is greater than one, n_trans inputs are expected, stacked along the first axis.

Parameters
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• data (complex[M], complex[n_tr, M], complex[n_modes], or
complex[n_tr, n_modes]) – The input source strengths (type 1 and 3) or source
modes (type 2).

• out (complex[n_modes], complex[n_tr, n_modes], complex[M], or
complex[n_tr, M], optional) – The array where the output is stored. Must be
of the right size.

Returns
The output array of the transform(s).

Return type
complex[n_modes], complex[n_tr, n_modes], complex[M], or complex[n_tr, M]
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FOURTEEN

JULIA INTERFACES

Ludvig af Klinteberg, Libin Lu, and others, have built FINUFFT.jl, an interface from the Julia language. This package
supports 32-bit and 64-bit precision, and automatically downloads and runs pre-built binaries of the FINUFFT library
for Linux, macOS, Windows and FreeBSD (for a full list see finufft_jll).

FINUFFT.jl has now (in 2022) itself been wrapped as part of NFFT.jl, which contains an “abstract” interface to any
NUFFT in Julia, with FINUFFT as an example. Their performance comparison page show that FINUFFT matches
their native Julia implementation for speed of type 1 and type 2 transforms in 3D, and beats NFFT, and with less
precomputation. In 1D and 2D, the native Julia implementation is 1-2 times faster than FINUFFT in their tests on
uniformly-random nonuniform points.
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CHAPTER

FIFTEEN

CHANGELOG

List of features / changes made / release notes, in reverse chronological order.
If not stated, FINUFFT is assumed (cuFINUFFT <=1.3 is listed separately).

* New doc page: migration guide from NFFT3 (2d1 case only).
* New foldrescale, removes [-3pi,3pi) restriction on NU points, and slight
speedup at large tols. Deprecates both opts.chkbnds and error code
FINUFFT_ERR_SPREAD_PTS_OUT_RANGE. Also inlined kernel eval code, increases
compile of spreadinterp.cpp to 10s. PR #440 (Marco Barbone + Martin Reinecke)

* CPU plan stage allows any # threads, warns if > omp_get_max_threads(); or
if single-threaded fixes nthr=1 and warns opts.nthreads>1 attempt.
Sort now respects spread_opts.sort_threads not nthreads. Supercedes PR 431.

* new docs troubleshooting accuracy limitations due to condition number of the
NUFFT problem.

* new sanity check on nj and nk (<0 or too big); new err code, tester, doc.
* MAX_NF increased from 1e11 to 1e12, since machines grow.
* improved GPU python docs: migration guide; usage from cupy, numba, torch,
pycuda. PyPI pkg still at 2.2.0beta.

V 2.2.0 (12/12/23)

* MERGE OF CUFINUFFT (GPU CODE) INTO FINUFFT SOURCE TREE:
- combined cmake build system via FINUFFT_USE_CUDA flag
- python wrapper for GPU code included
- GPU documentation (improving on cufinufft) added {install,c,python)_gpu.rst
- CI includes GPU full test via C++, and python four styles, via Jenkins.
- common spread_opts.h header; other code not yet made common.
- GPU interface has been changed (ie broken) to more closely match finufft
- cufinufft repo is left in legacy state at v1.3.
- Add support for cuda streams, allowing for concurrent memory transfer and
execution streams (PR #330)

[coding lead on this: Robert Blackwell, with help from Joakim Anden]
* CMake build structure (thanks: Wenda Zhou, Marco Barbone, Libin Lu)
- Note: the plan is to continue to support GNU makefile and make.inc.* but
to transition to CMake as the main build system.

- CI workflow using CMake on 3 OSes, 2 compilers each, PR #382 (Libin Lu)
* Docs: new tutorial content on iterative inverse NUFFTs; troubleshooting.
* GitHub-facing badges
* include/finufft/finufft_eitherprec.h moved up directory to be public (bea316c)
* interp (for type 2) accel by up to 60% in high-acc 2D/3D, by FMA/SIMD-friendly
rearranging of loops, by Martin Reinecke, PR #292.

(continues on next page)
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* remove inv array in binsort; speeds up multithreaded case by up to 50%
but no effect on single-threaded. Martin Reinecke, PR #291.

* Fix memleak in repeated setpts (Issue #269); thanks Aaron Shih & Libin Lu.
* Fortran90 example via a new FINUFFT fortran module, thanks Reinhard Neder.
* made the C++ plan object (finufft_plan_s) private; only opaque pointer
remains public, as should be (PR #233). Allows plan to have C++ constructs.

* fixed single-thread (OMP=OFF) build which failed due to fftw_defs.h/defs.h
* finally thread-safety for all fftw cases, kill FFTW_PLAN_SAFE (PR 354)
* Python interface: - better type checking (PR #237).
- fixing edge cases (singleton dims, issue #359).
- supports batch dimension of length 1 (issue #367).

* fix issue where repeated calls of finufft_makeplan with different numbers of
requested threads would always use the first requested number of threads

CUFINUFFT v 1.3 (06/10/23) (Final legacy release outside of FINUFFT repo)

* Move second half of onedim_fseries_kernel() to GPU (with a simple heuristic
basing on nf1 to switch between the CPU and the GPU version).

* Melody fixed bug in MAX_NF being 0 due to typecasting 1e11 to int (thanks
Elliot Slaughter for catching that).

* Melody fixed kernel eval so done w*d not w^d times, speeds up 2d a little, 3d
quite a lot! (PR#130)

* Melody added 1D support for both types 1 (GM-sort and SM methods) 2 (GM-sort),
in C++/CUDA and their test executables (but not Python interface).

* Various fixes to package config.
* Miscellaneous bug fixes.

V 2.1.0 (6/10/22)

* BREAKING INTERFACE CHANGE: nufft_opts is now called finufft_opts.
This is needed for consistency and fixes a historical problem.
We have compile-time warning, and backwards-compatibility for now.

* Professionalized the public-facing interface:
- safe lib (.so, .a) symbols via hierarchical namespacing of private funcs
that do not already begin with finufft{f}, in finufft:: namespace.
This fixes, eg, clash with linking against cufinufft (their Issue #138).

- public headers (finufft.h) has all macro names safe (ie FINUFFT suffix).
Headers both public and private rationalized/simplified.

- private headers are in include/finufft/, so not exposed by -Iinclude
- spread_opts renamed finufft_spread_opts, since publicly exposed and name
must respect library naming.

* change nj and nk in plan to BIGINT (int64_t), new big2d2f perftest, fixing
Issue #215.

* PDF manual moved from local to readthedocs.io hosting, Issue #221.
* Py doc for dtype fixed, Issue #216.
* spreadinterp evaluate_kernel_vector uses single arith when FLT=single.
* spread_opts.h fix duplication for FLT=single/double by making FLT->double.
* examples/simulplans1d1 demos ability to to wield independent plans.
* sped up float32 1d type 3 by 20% by using float32 cos()... thanks Wenda Zhou.

V 2.0.4 (1/13/22)

(continues on next page)
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* makefile now appends (not replaces by) environment {C,F,CXX}FLAGS (PR #199).
* fixed MATLAB Contents.m and guru help strings.
* fortran examples: avoided clash with keywords "type" and "null", and correct
creation of null ptr for default opts (issues #195-196, Jiri Kulda).

* various fixes to python wheels CI.
* various docs improvements.
* fixed modeord=1 failure for type 3 even though should never be used anyway
(issue #194).

* fixed spreadcheck NaN failure to detect bug introduced in 2.0.3 (9566511).
* Dan Fortunato found and fixed MATLAB setpts temporary array loss, issue #185.

V 2.0.3 (4/22/21)

* finufft (plan) now thread-safe via OMP lock (if nthr=1 and -DFFTW_PLAN_SAFE)
+ new example/threadsafe*.cpp demos. Needs FFTW>=3.3.6 (Issues #72 #180 #183)

* fixed bug in checkbounds that falsely reported NU pt as invalid if exactly 1
ULP below +pi, for certain N values only, egad! (Issue #181)

* GH workflows continuous integration (CI) in four setups (linux, osx*2, mingw)
* fixed memory leak in type 3.
* corrected C guru execute documentation.

CUFINUFFT v 1.2 (02/17/21)

* Warning: Following are Python interface changes -- not backwards compatible
with v 1.1 (See examples/example2d1,2many.py for updated usage)

- Made opts a kwarg dict instead of an object:
def __init__(self, ... , opts=None, dtype=np.float32)

=> def __init__(self, ... , dtype=np.float32, **kwargs)
- Renamed arguments in plan creation `__init__`:

ntransforms => n_trans, tol => eps
- Changed order of arguments in plan creation `__init__`:

def __init__(self, ... ,isign, eps, ntransforms, opts, dtype)
=> def __init__(self, ... ,ntransforms, eps, isign, opts, dtype)

- Removed M in `set_pts` arguments:
def set_pts(self, M, kx, ky=None, kz=None)

=> def set_pts(self, kx, ky=None, kz=None)

* Python: added multi-gpu support (in beta)
* Python: added more unit tests (wrong input, kwarg args, multi-gpu)
* Fixed various memory leaks
* Added index bound check in 2D spread kernels (Spread_2d_Subprob(_Horner))
* Added spread/interp tests to `make check`
* Fixed user request tolerance (eps) to kernel width (w) calculation
* Default kernel evaluation method set to 0, ie exp(sqrt()), since faster
* Removed outdated benchmark codes, cleaner spread/interp tests

V 2.0.2 (12/5/20)

* fixed spreader segfault in obscure use case: single-precision N1>1e7, where
rounding error is O(1) anyway. Now uses consistent int(ceil()) grid index.

* Improved large-thread scaling of type-1 (spreading) via transition from OMP

(continues on next page)

105



FINUFFT Documentation, Release 2.2.0

(continued from previous page)

critical to atomic add_wrapped_subgrid() operations; thanks Rob Blackwell.
* Increased heuristic t1 spreader max_subproblem_size, faster in 2D, 3D, and
allowed this and the above atomic threshold to be controlled as nufft_opts.

* Removed MAX_USEFUL_NTHREADS from defs.h and all code, for simplicity, since
large thread number now scales better.

* multithreaded one-mode accuracy test in C++ tests, t1 & t3, for faster tests.

V 2.0.1 (10/6/20)

* python (under-the-hood) interfacing changed from pybind11 to cleaner ctypes.
* non-stochastic test/*.cpp routines, zeroing small chance of incorrect failure
* Windows compatible makefile
* mac OSX improved installation instructions and make.inc.*

CUFINUFFT v 1.1 (09/22/20)

* Python: extended the mode tuple to 3D and reorder from C/python
ndarray.shape style input (nZ, nY, nX) to to the (F) order expected by the
low level library (nX, nY, nZ).

* Added bound checking on the bin size
* Dual-precision support of spread/interp tests
* Improved documentation of spread/interp tests
* Added dummy call of cuFFTPlan1d to avoid timing the constant cost of cuFFT
library.

* Added heuristic decision of maximum batch size (number of vectors with the
same nupts to transform at the same time)

* Reported execution throughput in the test codes
* Fixed timing in the tests code
* Professionalized handling of too-small-eps (requested tolerance)
* Rewrote README.md and added cuFINUFFT logo.
* Support of advanced Makefile usage, e.g. make -site=olcf_summit
* Removed FFTW dependency

V 2.0.0 (8/28/20)

* major changes to code, internally, and major improvements to operation and
language interfaces.

WARNING!: Here are all the interface compatibility changes from 1.1.2:
- opts (nufft_opts) is now always passed as a pointer in C++/C, not
pass-by-reference as in v1.1.2 or earlier.

- Fortran simple calls are now finufft?d?(..) not finufft?d?_f(..), and
they add a penultimate opts argument.

- Python module name is now finufft not finufftpy, and the interface has
been completely changed (allowing major improvements, see below).

- ier=1 is now a warning not an error; this indicates requested tol
was too small, but that a transform *was* done at the best possible
accuracy.

- opts.fftw directly controls the FFTW plan mode consistently in all
language interfaces (thus changing the meaning of fftw=0 in MATLAB).

- Octave now needs version >= 4.4, since OO features used by guru.

(continues on next page)
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These changes were deemed necessary to rationalize and improve FINUFFT
for the long term.
There are also many other new interface options (many-vector, guru)
added; see docs.

* the C++ library is now dual-precision, with distinct function interfaces for
double vs single precision operation, that are C and C++ compatible. Under
the hood this is achieved via simple C macros. All language interfaces now
have dual precision options.

* completely new (although backward compatible) MATLAB/octave interface,
including object-style wrapper around the guru interface, dual precision.

* completely new Fortran interface, allowing >2^31 sized (int64) arrays,
all simple, many-vector and guru interface, with full options control,
and dual precisions.

* all simple and many-vector interfaces now call guru interface, for much
better maintainability and less code repetition.

* new guru interface, by Andrea Malleo and Alex Barnett, allowing easier
language wrapping and control of point-setting, reuse of sorting and FFTW
plans. This finally bypasses the 0.1ms/thread cost of FFTW looking up previous
wisdom, which slowed down performance for many small problems.

* removed obsolete -DNEED_EXTERN_C flag.
* major rewrite of documentation, plus tutorial application examples in MATLAB.
* numdiff dependency is removed for pass-fail library validation.
* new (professional!) logo for FINUFFT. Sphinx HTML and PDF aesthetics.

CUFINUFFT v 1.0 (07/29/20)
* Started by Melody Shih.

V 1.1.2 (1/31/20)

* Ludvig's padding of Horner loop to w=4n, speeds up kernel, esp for GCC5.4.
* Bansal's Mingw32 python patches.

V 1.1.1 (11/2/18)

* Mac OSX installation on clang and gcc-8, clearer install docs.
* LIBSOMP split off in makefile.
* printf(...%lld..) w/ long long typecast
* new basic passfail tester
* precompiled binaries

V 1.1 (9/24/18)

* NOTE TO USERS: changed interface for setting default opts in C++ and C, from
pass by reference to pass by value of a pointer (see docs/). Unifies C++/C
interfaces in a clean way.

* fftw3_omp instead of fftw3_threads (on linux), is faster.
* rationalized header files.

V 1.0.1 (9/14/18)

* Ludvig's removal of omp chunksize in dir=2, another 20%+ speedup.
* Matlab doesn't change omp internal state.

(continues on next page)
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V 1.0 (8/20/18)

* repo transferred to flatironinstitute
* usage doc simpler
* 2d1many and 2d2many interfaces by Melody Shih, for multiple vectors with same
nonuniform points. All tests and docs for these interfaces.

* horner optimized kernel for sigma=5/4 (low upsampling), to go along with the
default sigma=2. Cmdline arg to change sigma in finufft?d_test.

* simplified various int types: only BIGINT remains.
* clearer docs.
* remaining C interfaces, with opts control.

V 0.99 (4/24/18)

* piecewise polynomial kernel evaluation by Horner, for faster spreading esp at
low accuracy and 1d or 2d.

* various heuristic decisions re whether to sort, and if sorting is single or
multi-threaded.

* single-precision libs get an "f" suffix so can coexist with double-prec.

V 0.98 (3/1/18)

* makefile includes make.inc for OS-specific defs.
* decided that, since Legendre nodes code of GLR alg by Hale/Burkhardt is LGPL
licensed, our use (not changing source) is not a "derived work", therefore
ok under our Apache v2 license. See:
https://tldrlegal.com/license/gnu-lesser-general-public-license-v3-(lgpl-3)
https://www.apache.org/licenses/GPL-compatibility.html
https://softwareengineering.stackexchange.com/questions/233571/
open-source-what-is-the-definition-of-derivative-work-and-how-does-it-impact

* fixed MATLAB FFTW incompat alloc crash, by hack of Joakim, calling fft()
first.

* python tests fixed, brought into makefile.
* brought in af Klinteberg spreader optimizations & SSE tricks.
* logo

V 0.97 (12/6/17)

* tidied all docs -> readthedocs.io host. README.md now a stub. TODO tidied.
* made sort=1 in tests for xeon (used to be 0)
* removed mcwrap and python dirs
* changed name of py routines to nufft* from finufft*
* python interfaces doc, up-to-date. Removed ms,.. from type-2 interfaces.
* removed RESCALEs from lower dims in bin_sort, speeds up a few % in 1D.
* allowed NU pts to be currectly folded from +-1 periods from central box, as
per David Stein request. Adds 5% to time at 1e-2 accuracy, less at higher acc.

* corrected dynamic C++ array allocs in spreader (some made static, 5% speedup)
* removed all C++11 dependencies, mainly that opts structs are all explicitly
initialized.

* fixed python interface to have chkbnds.
* tidied MEX interface

(continues on next page)

108



FINUFFT Documentation, Release 2.2.0

(continued from previous page)

* removed memory leaks (!)
* opts.modeord implemented and exposed to matlab/python interfaces. Also removes
looping backwards in RAM in deconvolveshuffle.

V 0.96 (10/15/17)

* apache v2 license, exposed flags in python interface.

V 0.95 (10/2/17)

* brought in JFM's in-package python wrapper & doc, create lib-static dir,
removed devel dir.

V 0.9: (6/17/17)

* adapted adv4 into main code, inner loops separate by dim, kill
the current spreader. Incorporate old ideas such as: checkerboard
per-thread grid cuboids, compare speed in 2d and 3d against
current 1d slicing. See cnufftspread:set_thread_index_box()

* added FFTW_MEAS vs FFTW_EST (set as default) opts flag in nufft_opts, and
matlab/python interfaces

* removed opts.maxnalloc in favor of #defined MAX_NF
* fixed the 1-target case in type-3, all dims, to avoid nan; clarified logic
for handling X=0 and/or S=0. 6/12/17

* changed arraywidcen to snap to C=0 if relative shift is <0.1, avoids cexps in
type-3.

* t3: if C1 < X1/10 and D1 < S1/10 then don't rephase. Same for d=2,3.
* removed the 1/M type-1 prefactor, also in all test routines. 6/6/17
* removed timestamp-based make decision whether to rebuild matlab/finufft.cpp,
since git clone creates files with random timestamp order!

* theory work on exp(sqrt) being close to PSWF. Analysis.
* fix issue w/ needing mwrap when do make matlab.
* makefile has variables customizing openmp and precision, non-omp tested
* fortran single-prec demos (required all direct ft's in single prec too!)
* examples changed to err rel to max F.
* matlab interface control of opts.spread_sort.
* matlab interface using doubles as big ints w/ correct typecasting.
* twopispread removed, used flag in spread_opts for [-pi,pi] input instead.
* testfinufft* use same integer type INT as for interfaces, typecast all %ld in
printf warnings, use omp rand array filling

* INT64 for necessary size-setting arrays, removed all %lf printf warnings in
finufft*

* all internal array indexing is BIGINT, switchable from long long to int via
SMALLINT compile flag (default off, see utils.h)

* all integers in interfaces are type INT, default 64-bit, switchable to 32 bit
by INTERGER32 compile flag (see utils.h)

* test big probs (speed, crashing) and decide if BIGINT is long long or int?
slows any array access down, or spreading? allows I/O sizes
(M, N1*N2*N3) > 2^31. Note June-Yub int*8 in nufft-1.3.x slowed things by
factor 2-3.

* tidy up spreader to be BIGINT = long long compatible and test > 2^31.
* spreadtest parallel rand()

(continues on next page)
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* sort flag passed to spreader via finufft, and test scripts check if Xeon
(-> sort=0)

* opts in the manual
* removed all xk2, dNU2 sorted arrays, and not-needed dims y,z; halved RAM usage

V 0.8: (3/27/17)

* bnderr checking done in dir=1,2 main loops, not before.
* all kx2, dNU2 arrays removed, just done by permutation index when needed.
* MAC OSX test, makefile, instructions.
* matlab wrappers in 3D
* matlab wrappers, mcwrap issue w/ openmp, mex, and subdirs. Ship mex
executables for linux. Link to .a

* matlab wrappers need ier output? yes, and internal omp numthreads control
(since matlab's is poor)

* wrappers for MEX octave, instructions. Ship .mex for octave.
* python wrappers - Dan Foreman-Mackey starting to add something similar to

https://github.com/dfm/python-nufft
* check is done before attempting to malloc ridiculous array sizes, eg if a
large product of x width and k width is requested in type 3 transforms.

* draft make python
* basic manual (txt)

V. 0.7:

* build static & shared lib
* fixed bug when Nth>Ntop
* fortran drivers use dynamic malloc to prevent stack segfaults that CMCL had
* bugs found in fortran drivers, removed
* split out devel text files (TODO, etc)
* made pass-fail test script counting crashes and numdiff fails.
* finufft?d_test have a no-timings option, and exit with ier.
* global error codes
* made finufft routines & testers return error codes rather than exit().
* dumbinput test executable
* found nan returned error for nj=0 in type-1, fixed so returns the zero array.
* fixed type 2 to not segfault when ms,mt, or mu=0, doing dir=2 0-padding right
* array utils use pointers to make which vars they write to explicit.
* don't do final type-3 rephase if C1 nan or 0.
* finished all dumbinputs, all dims
* fortran compilation fixed
* makefile self-documents
* nf1 (etc) size check before alloc, exit gracefully if exceeds RAM
* integrate into nufft_comparison, esp vs NFFT - jfm did
* simple examples, simpler than the test drivers
* fortran link via gfortran, better fortran docs
* boilerplate stuff as in CMCL page

pre-V. 0.7: (Jan-Feb 2017)

* efficient modulo in spreader, done by conditionals
* removed data-zeroing bug in t-II spreader, slowness of large arrays in t-I.

(continues on next page)
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* clean dir tree
* spreader dir=1,2 math tests in 3d, then nd.
* Jeremy's request re only computing kernel vals needed (actually

was vital for efficiency in dir=1 openmp version), Ie fix KB kereval in
spreader so doesn't wdo 3d fill when 1 or 2 will do.

* spreader removed modulo altogether in favor of ifs
* OpenMP spreader, all dims
* multidim spreader test, command line args and bash driver
* cnufft->finufft names, except spreader still called cnufft
* make ier report accuracy out of range, malloc size errors, etc
* moved wrappers to own directories so the basic lib is clean
* fortran wrapper added ier argument
* types 1,2 in all dims, using 1d kernel for all dims.
* fix twopispread so doesn't create dummy ky,kz, and fix sort so doesn't ever

access unused ky,kz dims.
* cleaner spread and nufft test scripts
* build universal ndim Fourier coeff copiers in C and use for finufft
* makefile opts and compiler directives to link against FFTW.
* t-I, t-II convergence params test: R=M/N and KB params
* overall scale factor understand in KB
* check J's bessel10 approx is ok. - became irrelevant
* meas speed of I_0 for KB kernel eval - became irrelevant
* understand origin of dfftpack (netlib fftpack is real*4) - not needed
* [spreader: make compute_sort_indices sensible for 1d and 2d. not needed]
* next235even for nf's
* switched pre/post-amp correction from DFT of kernel to F series (FT) of
kernel, more accurate

* Gauss-Legendre quadrature for direct eval of kernel FT, openmp since cexp slow
* optimize q (# G-L nodes) for kernel FT eval on reg and irreg grids
(common.cpp). Needs q a bit bigger than like (2-3x the PTR, when 1.57x is
expected). Why?

* type 3 segfault in dumb case of nj=1 (SX product = 0). By keeping gam>1/S
* optimize that phi(z) kernel support is only +-(nspread-1)/2, so w/ prob 1 you
only use nspread-1 pts in the support. Could gain several % speed for same acc

* new simpler kernel entirely
* cleaned up set_nf calls and removed params from within core libs
* test isign=-1 works
* type 3 in 2d, 3d
* style: headers should only include other headers needed to compile the .h;
all other headers go in .cpp, even if that involves repetition I guess.

* changed library interface and twopispread to dcomplex
* fortran wrappers (rmdir greengard_work, merge needed into fortran)

FINUFFT Started: mid-January 2017, building on nufft_comparison of J. Magland.
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SIXTEEN

DEVELOPER NOTES

• Developers needing to update/regenerate documentation in general, including our readthedocs website, see
docs/README. Developers changing MATLAB/octave interfaces or docs, also see matlab/README.

• To update the version number, this needs to be done by hand in the following places:

– CMakeLists.txt for cmake

– docs/conf.py for sphinx

– python/finufft/setup.py for the python pkg version

– python/cufinufft/setup.py for the GPU python pkg version

– include/finufft/defs.h for the debug>0 output

– matlab/Contents.m for the MATLAB/Octave help

– CHANGELOG: don’t forget to describe the new features and changes, folding lines at 80 chars.

• There are some sphinx tags in the source code, indicated by @ in comments. Please leave these alone since they
are needed by the doc generation.

• If you add a new option field (recall it must be plain C style only, no special types) to include/finufft_opts.h,
don’t forget to add it to include/finufft.fh, include/finufft_mod.f90, matlab/finufft.mw, python/
finufft/_finufft.py, and the Julia interface, as well a paragraph describing its use in the docs. Also to set
its default value in src/finufft.cpp. You will then need to regenerate the docs as in docs/README.

• For testing and performance measuring routines see test/README and perftest/README. We need more
of the latter, eg, something making performance graphs that enable rapid eyeball comparison of various set-
tings/machines.

• Continuous Integration (CI). See files for this in .github/workflows/. It currently tests the default makefile
settings in linux, and three other make.inc.* files covering OSX and Windows (MinGW). CI does not test build
the variant OMP=OFF. The dev should test these locally. Likewise, the Julia wrapper is separate and thus not
tested in CI. We have added JenkinsFile for the GPU CI via python wrappers.

• Installing MWrap. This is needed only for experts to rebuild the matlab/octave interfaces. MWrap is a very
useful MEX interface generator by Dave Bindel, now maintained and expanded by Zydrunas Gimbutas. Make
sure you have flex and bison installed to build it. As of FINUFFT v2.0 you will need a recent (>=0.33.10)
version of MWrap. Make sure to override the location of MWrap by adding a line such as:

MWRAP = your-path-to-mwrap-executable

to your make.inc, and then you can use the make mex task.

• The cufinufft Python wheels are generated using Docker based on the manylinux2014 image. For instructions,
see tools/cufinufft/distribution_helper.sh. These are binary wheels that are built using CUDA 11
(or optionally CUDA 12, but these are not distributed on PyPI) and bundled with the necessary libraries.
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• Testing cufinufft (for FI, mostly)

# to grab an interactive GPU shell -- here with 10 cores for building and a v100 for
# testing. You could just as easily try this on your workstation
srun -p gpu -C v100 -c 10 -n 1 --gpus=1 --pty bash
cd path/to/finufft

# get the local card to this machine's compute capability. If you know it you can␣
→˓obviously type it yourself
CUDAARCH=$(nvidia-smi --query-gpu=compute_cap --format=csv,noheader|head -n 1| sed 's/\./
→˓/')

# Load modules and build a venv. We typically recommend using venvs that fall back our␣
→˓our
# default packages with the python module (--system-site-packages)
module -q purge
module -q load gcc python cmake fftw cuda
python -m venv venv --system-site-packages
source venv/bin/activate
pip install --upgrade pip

# building. Feel free to tweak whatever
mkdir -p build && cd build
cmake -DFINUFFT_BUILD_TESTS=on -DFINUFFT_BUILD_EXAMPLES=on -DFINUFFT_USE_CUDA=on \

-DCMAKE_CUDA_ARCHITECTURES=$CUDAARCH -DCMAKE_BUILD_TYPE=RelWithDebInfo ..
make -j 10

# for standard tests
ctest

# python install. Needs build from before since installer searches for libcufinufft.so in
# LD_LIBRARY_PATH (and default path)
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PWD pip install -e ../python/cufinufft

# python tests. we have other GPU framework support, but you need to make sure they're
# installed (numba, pycuda, torch, cupy). This LD_LIBRARY_PATH may or may not be␣
→˓necessary,
# depending on if an RPATHing issue appears. Fix upstream at time of writing
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PWD python -m pytest --framework=numba ../python/
→˓cufinufft
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SEVENTEEN

RELATED PACKAGES

17.1 Other recommended NUFFT libraries

• cuFINUFFT: Our GPU version of FINUFFT, for single precision in 2D and 3D, type 1 and 2. Still under devel-
opment by Melody Shih (NYU) and others. Often achieves speeds around 10x the CPU version.

• NFFT3: well-supported and multi-featured C++ library using FFTW. Has MATLAB MEX interface. However,
significantly slower and/or more memory-intensive than FINUFFT (see reference [FIN]). Has many more general
abilities, eg, inverse NUFFT. We are working on this too.

• CMCL NUFFT: NYU single-threaded Fortran library using self-contained FFT, fast Gaussian gridding kernel.
Has MATLAB MEX interface. Much (up to 50x even for one thread) slower than FINUFFT, but is very easy to
compile.

• MIRT Michigan Image Reconstruction Toolbox. Native MATLAB, single-threaded sparse mat-vec, prestores all
kernel evaluations, thus is memory-intensive but surprisingly fast for a single-threaded implementation. How-
ever, slower than FINUFFT for all tolerances smaller than 10−1.

• PyNUFFT Python code supporting CPU and GPU operation. We have not compared against FINUFFT yet.

Also see the summary of library performances in our paper [FIN] in the references.
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EIGHTEEN

DEPENDENT PACKAGES, WRAPPERS, USERS, AND CITATIONS

Here we list packages that depend on or wrap FINUFFT, and papers or groups using it. Papers that merely cite our
work are listed separately at the bottom. Please let us know (and use github’s dependent package link) if you are a user
or package maintainer but not listed, and please “star” our GitHub repo. It will help us to improve the library if you
also describe your use case parameters here.

18.1 Packages relying on FINUFFT or cuFINUFFT

Here are some packages dependent on FINUFFT (please let us know of others, and also add them to GitHub’s Used
By feature):

1. SMILI, very long baseline interferometry reconstruction code by Kazu Akiyama and others, uses FINUFFT (2d1,
2d2, Fortran interfaces) as a key library. Akiyama used SMILI to reconstruct the famous black hole image in
2019 from the Event Horizon Telescope.

2. ASPIRE: software for cryo-EM, based at Amit Singer’s group at Princeton. github

3. DISCUS: Fraunhofer diffraction from atomic clusters, nanomaterials and powders, by Reinhard Neder and others.
Their manual (p.161) explains that FINUFFT enabled a two orders of magnitude speed-up.

4. NWelch: Code for estimating power spectra and other properties of non-equispaced time-series, by astronomer
Sarah Dodson-Robinson and others. Uses Python 1D type 3.

5. Multitaper.jl: estimates power spectra from non-equispaced time series, improving upon Lomb-Scargle and
NWelch, for exoplanet detection, by Sarah Dodson-Robinson and Charlotte Haley. Uses Julia 1D type 3.

6. Pyxu: Solves linear inverse problems with convex penalties using proximal optimization algorithms, in Python,
by researchers at EPFL. This includes regularized imaging problems. (cu)FINUFFT is used for all NUFFTs.

7. MRI-NUFFT: unified Python interface to various NUFFT implementations for MRI reconstruction, with coil
sensitivities, density compensation, and off-resonance corrections. From INRIA/CEA Paris Neurospin group.

8. mri_distortion_toolkit: Characterisation and reporting of geometric distortion in MRI. Uses our PyPI pkg.

9. EM-Align: Aligning rotation, reflection, and translation between volumes (desntiy maps) in cryo-electron mi-
croscopy, from Shkolnisky Lab at Tel Aviv.

10. spinifel: Uses the multitiered iterative phasing (M-TIP) algorithm for single particle X-ray diffraction imaging,
on CPU/GPU, from the ExaFEL project at LBNL/DOE.

11. sinctransform: C++ and MATLAB codes to evaluate sums of the sinc and sinc^2 kernels between arbitrary
nonuniform points in 1,2, or 3 dimensions, by Hannah Lawrence (2017 summer intern at Flatiron).

12. fsinc: Gaute Hope’s fast sinc transform and interpolation Python package.

13. FTK: Factorization of the translation kernel for fast 2D rigid image alignment, by Rangan, Spivak, Andén, and
Barnett.
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18.2 Other wrappers to (cu)FINUFFT

1. FINUFFT.jl: a julia language wrapper by Ludvig af Klinteberg, Libin Lu, and others, now using pure Julia, and
fully featured (rather than via Python). This is itself wrapped by AbstractNFFTs.jl in NFFT.jl.

2. TensorFlow NUFFT: a wrapper to the differentiable machine learning Python tool TensorFlow, for the CPU (via
FINUFFT) and GPU (via cuFINUFFT). By Javier Montalt Tordera (UCL).

3. JAX bindings to (cu)FINUFFT: a wrapper to the differentiable machine learning Python tool JAX. Directly
exposes the FINUFFT library to JAX’s XLA backend, as well as implementing differentiation rules for the trans-
forms. By Dan Foreman-Mackey (CCA).

4. PyTorch wrapper to (cu)FINUFFT: a wrapper to the differentiable machine learning Python tool PyTorch. By
Michael Eickenberg and Brian Ward (CCM).

18.3 Research output using (cu)FINUFFT

For the latest see: Google Scholar FINUFFT citations, and cuFINUFFT citations. Here are some highlights that we
know about:

1. Marco Barbone and colleagues at Imperial have used FINUFFT and multi-GPU cuFINUFFT to accelerate 4D
MRI reconstruction via the XD-GRASP algorithm by 10-20x. See their 2021 conference paper and 2023 article.

2. “Cryo-EM reconstruction of continuous heterogeneity by Laplacian spectral volumes”, Amit Moscovich, Amit
Halevi, Joakim Andén, and Amit Singer. Appeared in Inv. Prob. (2020), https://arxiv.org/abs/1907.01898

3. “A Fast Integral Equation Method for the Two-Dimensional Navier-Stokes Equations”, Ludvig af Klinteberg,
Travis Askham, and Mary Catherine Kropinski, J. Comput. Phys., 409 (2020) 109353; uses FINUFFT 2D type
2. https://arxiv.org/abs/1908.07392

4. “MR-MOTUS: model-based non-rigid motion estimation for MR-guided radiotherapy using a reference image
and minimal k-space data”, Niek R F Huttinga, Cornelis A T van den Berg, Peter R Luijten and Alessandro
Sbrizzi, Phys. Med. Biol. 65(1), 015004. https://arxiv.org/abs/1902.05776

5. Koga, K. “Signal processing approach to mesh refinement in simulations of axisymmetric droplet dynamics”,
https://arxiv.org/abs/1909.09553 Koga uses 1D FINUFFT to generate a “guideline function” for reparameteriz-
ing 1D curves.

6. L. Wang and Z. Zhao, “Two-dimensional tomography from noisy projection tilt series taken at unknown view
angles with non-uniform distribution”, International Conference on Image Processing (ICIP), (2019).

7. “Factorization of the translation kernel for fast rigid image alignment,” Aaditya Rangan, Marina Spivak, Joakim
Andén, and Alex Barnett. Inverse Problems 36 (2), 024001 (2020). https://arxiv.org/abs/1905.12317

8. The late Aleks Donev’s group at NYU (Ondrej Maxian, et al) uses FINUFFT in Stokes viscous hydrodynamics
solvers.

9. Efficient wide-field radio interferometry response. P. Arras, M. Reinecke, R. Westermann, T.A. Ensslin, Astron.
Astrophys. (2020). https://doi.org/10.1051/0004-6361/202039723

10. Johannes Blaschke, Jeff Donatelli, Jamie Sethian, and collaborators at the ExaFEL coherent light source use FIN-
UFFT and cuFINUFFT to accelerate single-particle X-ray imaging. See preprint by Chang, Slaughter, Donatelli,
et al: https://arxiv.org/abs/2109.05339

11. A. Harness, S. Shaklan, P. Willems, N. J. Kasdin, K. Balasubramanian, V. White, K. Yee, P. Dumont, R. Muller,
S. Vuong, M. Galvin, “Optical experiments and model validation of perturbed starshade designs,” Proc. SPIE
11823, Techniques and Instrumentation for Detection of Exoplanets X, 1182312 (1 September 2021); https:
//doi.org/10.1117/12.2595409
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https://doi.org/10.1117/12.2595409


FINUFFT Documentation, Release 2.2.0

12. Chang, P., Pienaar, E., & Gebbie, T. (2020). “Malliavin–Mancino Estimators Implemented with Nonuniform
Fast Fourier Transforms.” SIAM J. Sci. Comput. 42(6), B1378–B1403. https://doi.org/10.1137/20m1325903

13. Heisenberg voxelization (HVOX) for inteferometry of spherical sky maps in radio-astronomy, by Kashani, Sime-
oni, et al. (2023) https://arxiv.org/abs/2306.06007 https://github.com/matthieumeo/hvox

14. Sriramkrishnan Muralikrishnan at the Jülich Supercomputing Centre is running cufinufft on 6144 A100 GPUs
(the NERSC-9 supercomputer), for a particle-in-Fourier method for plasma simulations. https://pasc23.
pasc-conference.org/presentation/?id=msa167&sess=sess154

15. Related to that, FINUFFT is being used for a better-converging Fourier approach to the Immersed Boundary
method of Peskin and his group at NYU. Zhe Chen and Charles Peskin, https://arxiv.org/abs/2302.08694

16. Pei R, Askham T, Greengard L, Jiang S (2023). “A fast method for imposing periodic boundary conditions on
arbitrarily-shaped lattices in two dimensions.” J. Comput. Phys. 474, 111792. https://doi.org/10.1016/j.jcp.
2022.111792 Uses FINUFFT for plane wave sums.

17. Dylan Green, JR Jamora, and Anne Gelb (2023). “Leveraging joint sparsity in 3D synthetic aperture radar
imaging,” Appl. Math. Modern Chall. 1, 61-86. https://doi.org/10.3934/ammc.2023005 Uses 3D transforms
between 𝑁 = 2013 modes (voxels) and 𝑀 = 313300 data points. As they state, “. . . the computational cost of
each method heavily depends on the NUFFT algorithm used.”

Papers or codes using our new ES window (kernel spreading) function, but not the whole FINUFFT package:

1. Davood Shamshirgar and Anna-Karin Tornberg, “Fast Ewald summation for electrostatic potentials with arbitrary
periodicity”, exploit our “Barnett-Magland” (BM), aka exp-sqrt (ES) window function. https://arxiv.org/abs/
1712.04732

2. Martin Reinecke: codes for radio astronomy reconstruction including https://gitlab.mpcdf.mpg.de/mtr/ducc

#. Aref Hashemi et al, “Computing hydrodynamic interactions in confined doubly-periodic geometries in linear time,”
J. Chem. Phys. 158(15): 154101 (2023). DOI:10.1063/5.0141371. https://arxiv.org/abs/2210.01837

Papers influenced by other aspects of FINUFFT:

1. NFFT.jl: Generic and Fast Julia Implementation of the Nonequidistant Fast Fourier Transform, by Tobias Knopp,
Marija Boberg, Mirco Grosser (2022). https://arxiv.org/abs/2208.00049 They use our blocked spreading and
piecewise polynomial ideas, and beat our type 1 and 2 performance by a factor of up to 1.7 in multithreaded
cases. Code is dimension-independent but very abstract (two levels of meta-programming, I believe).

18.4 Some citations to FINUFFT that do not appear to be actual users

1. https://arxiv.org/abs/1903.08365

2. https://arxiv.org/abs/1908.00041

3. https://arxiv.org/abs/1908.00574

4. https://arxiv.org/abs/1912.09746

5. https://arxiv.org/abs/2010.05295

Now too many to track by hand. . . please see Google Scholar search linked above.
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https://doi.org/10.1016/j.jcp.2022.111792
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https://arxiv.org/abs/2010.05295
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Please cite the first two papers if you use the CPU library FINUFFT, and the third if you use the GPU library cuFIN-
UFFT:

[FIN] A parallel non-uniform fast Fourier transform library based on an “exponential of semicircle” kernel. A. H.
Barnett, J. F. Magland, and L. af Klinteberg. SIAM J. Sci. Comput. 41(5), C479-C504 (2019). arxiv version

[B20] Aliasing error of the exp(𝛽
√
1− 𝑧2) kernel in the nonuniform fast Fourier transform. A. H. Barnett. Appl.

Comput. Harmon. Anal. 51, 1-16 (2021). arxiv version

[S21] cuFINUFFT: a load-balanced GPU library for general-purpose nonuniform FFTs. Y.-H. Shih, G. Wright, J.
Andén, J. Blaschke, and A. H. Barnett. PDSEC2021 workshop of the IPDPS2021 conference (best paper prize at
workshop). arxiv version

20.1 Background references

For the Kaiser–Bessel kernel and the related PSWF, see:

[KK] Chapter 7. System Analysis By Digital Computer. F. Kuo and J. F. Kaiser. Wiley (1967).

[FT] K. Fourmont. Schnelle Fourier-Transformation bei nichtäquidistanten Gittern und tomographische Anwendungen.
PhD thesis, Univ. Münster, 1999.

[F] Non-equispaced fast Fourier transforms with applications to tomography. K. Fourmont. J. Fourier Anal. Appl.
9(5) 431-450 (2003).

[FS] Nonuniform fast Fourier transforms using min-max interpolation. J. A. Fessler and B. P. Sutton. IEEE Trans. Sig.
Proc., 51(2):560-74, (Feb. 2003)

[ORZ] Prolate Spheroidal Wave Functions of Order Zero: Mathematical Tools for Bandlimited Approximation. A.
Osipov, V. Rokhlin, and H. Xiao. Springer (2013).

[KKP] Using NFFT3—a software library for various nonequispaced fast Fourier transforms. J. Keiner, S. Kunis and
D. Potts. Trans. Math. Software 36(4) (2009).

[DFT] How exponentially ill-conditioned are contiguous submatrices of the Fourier matrix? A. H. Barnett, submitted,
SIAM Rev. (2020). arxiv version

The appendix of the last of the above contains the first known published proof of the Kaiser–Bessel Fourier transform
pair. This next two papers prove error estimates for sinh-type and other kernels closely related (and possibly slightly
more optimal) than ours:

[PT] Uniform error estimates for the NFFT. D. Potts and M. Tasche. (2020). arxiv

[PT2] Continuous window functions for NFFT. D. Potts and M. Tasche. (2020). arxiv. In revision, Adv. Comput.
Math.
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In late 2020 it was pointed out to us by Piero Angeletti that the exponential of semicircle kernel developed for FINUFFT
had in fact been independently proposed:

[AN] A new window based on exponential function. K. Avci and A. Nacaroğlu. 2008 Ph.D. Research in Microelec-
tronics and Electronics, Istanbul. 69-72 (2008). doi:10.1109/RME.2008.4595727.

FINUFFT builds upon the CMCL NUFFT, and the Fortran wrappers are very similar to its interfaces. For that, the
following are references:

[GL] Accelerating the Nonuniform Fast Fourier Transform. L. Greengard and J.-Y. Lee. SIAM Review 46, 443 (2004).

[LG] The type 3 nonuniform FFT and its applications. J.-Y. Lee and L. Greengard. J. Comput. Phys. 206, 1 (2005).

Inversion of the NUFFT is covered in [KKP] above, and in:

[GLI] The fast sinc transform and image reconstruction from nonuniform samples in k-space. L. Greengard, J.-Y. Lee
and S. Inati, Commun. Appl. Math. Comput. Sci (CAMCOS) 1(1) 121-131 (2006).

The original NUFFT analysis using truncated Gaussians is (the second improving upon the convergence rate of the
first):

[DR] Fast Fourier Transforms for Nonequispaced data. A. Dutt and V. Rokhlin. SIAM J. Sci. Comput. 14, 1368
(1993).

[S] A note on fast Fourier transforms for nonequispaced grids. G. Steidl, Adv. Comput. Math. 9, 337-352 (1998).

20.2 Talk slides

These PDF slides may be a useful introduction to FINUFFT and applications.

Yu-Hsuan (Melody) Shih’s PDSEC2021 20-minute presentation video on cuFINUFFT is here: https://www.youtube.
com/watch?v=PnW6ehMyHxM
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